About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Nasdaq Adds AI and Transfer Learning to Enhance Market Surveillance

Subscribe to our newsletter

Nasdaq has enhanced market surveillance of its US stock exchange following the introduction of artificial intelligence (AI) and transfer learning to improve detection of malicious activity. Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. The company plans to push use of the technology to other exchanges and regulators through its Market Technology business, and will implement it in other Nasdaq markets. In time, it will also extend the range of scenarios the system detects.

The technology supports automated detection, investigation and analysis of potentially abusive or disorderly trading, and is the result of collaboration between Nasdaq’s Market Technology business, Machine Intelligence Lab and US market surveillance unit. It provides deep learning, allowing computers to understand extremely complex patterns and hidden relationships in massive amounts of data, and learn invariant representations; and transfer learning to create new models from old models and achieve rapid implementation, scalable model development, and detection of new forms of financial crime in new markets. Human-in-the-loop learning allows analysts to share their expertise with the machine, while human assisted model improvement leads to more signal and less noise in flagged examples.

Tony Sio, vice president and head of marketplace regulatory technology at Nasdaq, says that by training models based on their experience in monitoring data directly from the trading engine of the Nasdaq stock exchange, and using transfer learning, the company has built a framework that can provide learning to other marketplaces.

Martina Rejsjo, vice president and head of market surveillance, North America equities at Nasdaq, comments: “By incorporating AI into our monitoring systems, we are sharpening our detection capabilities and broadening our view of market activity to safeguard the integrity of our country’s markets.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline and modernise the trader desktop are gaining a tangible edge – both in speed...

BLOG

Genesis Global Enhances Financial App Development Platform with End-User Reporting Controls

Genesis Global has announced a significant update to its AI-native application development platform for financial markets, giving end-users direct control over the creation, modification and distribution of reports based on application data. The enhancement marks a shift from traditional development practices, where changes to reporting functions would typically require developer intervention and code adjustments. The...

EVENT

TradingTech Summit New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

The Reference Data Utility Handbook

The potential of a reference data utility model has been discussed for many years, and while early implementations failed to gain traction, the model has now come of age as financial institutions look for new data management models that can solve the challenges of operational cost reduction, improved data quality and regulatory compliance. The multi-tenanted...