About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Nasdaq Adds AI and Transfer Learning to Enhance Market Surveillance

Subscribe to our newsletter

Nasdaq has enhanced market surveillance of its US stock exchange following the introduction of artificial intelligence (AI) and transfer learning to improve detection of malicious activity. Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. The company plans to push use of the technology to other exchanges and regulators through its Market Technology business, and will implement it in other Nasdaq markets. In time, it will also extend the range of scenarios the system detects.

The technology supports automated detection, investigation and analysis of potentially abusive or disorderly trading, and is the result of collaboration between Nasdaq’s Market Technology business, Machine Intelligence Lab and US market surveillance unit. It provides deep learning, allowing computers to understand extremely complex patterns and hidden relationships in massive amounts of data, and learn invariant representations; and transfer learning to create new models from old models and achieve rapid implementation, scalable model development, and detection of new forms of financial crime in new markets. Human-in-the-loop learning allows analysts to share their expertise with the machine, while human assisted model improvement leads to more signal and less noise in flagged examples.

Tony Sio, vice president and head of marketplace regulatory technology at Nasdaq, says that by training models based on their experience in monitoring data directly from the trading engine of the Nasdaq stock exchange, and using transfer learning, the company has built a framework that can provide learning to other marketplaces.

Martina Rejsjo, vice president and head of market surveillance, North America equities at Nasdaq, comments: “By incorporating AI into our monitoring systems, we are sharpening our detection capabilities and broadening our view of market activity to safeguard the integrity of our country’s markets.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Best Practices for Managing Trade Surveillance

The surge in trading volumes combined with the emergence of new digital financial assets and geopolitical events have added layers of complexity to market activities. Traditional surveillance methods often struggle to keep pace with these changes, leading to difficulties in detecting sophisticated market abuses and increased regulatory risk. To address these challenges, financial institutions are...

BLOG

Slaying the Monolith: A Pragmatist’s Guide to Modernising Trading Architecture

For decades, trading technology has been haunted by large, intricate, all-in-one applications that power core business functions, aka the monolith. While once a necessity, these systems have become a source of immense friction. They are brittle, expensive to maintain, and notoriously slow to change, creating a chasm between business demands for agility and IT’s capacity...

EVENT

RegTech Summit New York

Now in its 9th year, the RegTech Summit in New York will bring together the RegTech ecosystem to explore how the North American capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Enterprise Data Management, 2010 Edition

The global regulatory community has become increasingly aware of the data management challenge within financial institutions, as it struggles with its own challenge of better tracking systemic risk across financial markets. The US regulator in particular is seemingly keen to kick off a standardisation process and also wants the regulatory community to begin collecting additional...