About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Nasdaq Adds AI and Transfer Learning to Enhance Market Surveillance

Subscribe to our newsletter

Nasdaq has enhanced market surveillance of its US stock exchange following the introduction of artificial intelligence (AI) and transfer learning to improve detection of malicious activity. Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. The company plans to push use of the technology to other exchanges and regulators through its Market Technology business, and will implement it in other Nasdaq markets. In time, it will also extend the range of scenarios the system detects.

The technology supports automated detection, investigation and analysis of potentially abusive or disorderly trading, and is the result of collaboration between Nasdaq’s Market Technology business, Machine Intelligence Lab and US market surveillance unit. It provides deep learning, allowing computers to understand extremely complex patterns and hidden relationships in massive amounts of data, and learn invariant representations; and transfer learning to create new models from old models and achieve rapid implementation, scalable model development, and detection of new forms of financial crime in new markets. Human-in-the-loop learning allows analysts to share their expertise with the machine, while human assisted model improvement leads to more signal and less noise in flagged examples.

Tony Sio, vice president and head of marketplace regulatory technology at Nasdaq, says that by training models based on their experience in monitoring data directly from the trading engine of the Nasdaq stock exchange, and using transfer learning, the company has built a framework that can provide learning to other marketplaces.

Martina Rejsjo, vice president and head of market surveillance, North America equities at Nasdaq, comments: “By incorporating AI into our monitoring systems, we are sharpening our detection capabilities and broadening our view of market activity to safeguard the integrity of our country’s markets.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

Beyond the Blueprint: Integrating Data Fabric and Data Mesh in Capital Markets

The demands placed upon modern trading infrastructures, driven by increasing data volumes, the mandate for real-time processing, and stringent regulatory requirements, are exposing the limitations of historical data architectures. In response, capital markets firms are accelerating the re-evaluation of their data strategies to secure greater agility, scalability, and enhanced governance. A recent webinar hosted by...

EVENT

Buy AND Build: The Future of Capital Markets Technology

Buy AND Build: The Future of Capital Markets Technology London examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

Corporate Actions Europe 2010

The European corporate actions market could be the stage of some pretty heavy duty discussions regarding standards going forward, particularly with regards to the adoption of both XBRL tagging and ISO 20022 messaging. The region’s issuer community, for one, is not going to be easy to convince of the benefits of XBRL tags, given the...