About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Kingland Increases Accuracy of Text Analytics for Unstructured Data

Subscribe to our newsletter

Kingland continues to push the technology envelope with enhancements to its Text Analytics Platform Suite, which we touched on in last week’s catch up on the company with president Tony Brownlee. The enhanced solution includes new administration menu options with deeper analysis and metrics for unstructured data sources and events, and improvements to Named Entity Recognition (NER) training.

The improvements to NER training increase accuracy in identifying organisations and people that are intuitively highlighted by text analytics within documents. In this case, targeted retraining of the NER models has increased the accuracy of stock models from 60% to nearly 90% in aggregate over numerous source document sets. This saves hours of reading and analysis time for teams manually reviewing documents for specific entities and related events.

By way of example, Kingland says that while the average person can read and comprehend a 100+ page document in several hours, text analytics solutions can read and process the same document in minutes.

Matt Good, chief technology evangelist at Kingland, explains these developments as a response to industry leaders wanting to efficiently solve data challenges around searching and extracting data from a variety of unstructured data sources. Use cases include onboarding, Know Your Customer (KYC), underwriting, compliance, risk monitoring, Anti-Money Laundering (AML), and sentiment analysis.

He adds: “Most enterprises have hundreds of thousands, if not millions of documents used by dozens or hundreds of processes. Organisations want speed, accuracy and the comfort of knowing that they are making business decisions based on extracted data that provides context with their counterparties, people, events and general entities of interest.”

Features of the Kingland Text Analytics Platform Suite include: unstructured source integration, which integrates directly with RSS feeds, crawls bot friendly websites, and supports imported documents in PDF, HTML and other source formats to allow business decisions based on more complete information; data identification and extraction, which combines trained and configurable language models to identify, tag and extract entities, people, events and other data attributes; and language modelling and training, which applies different models to different types of unstructured data sources and documents to support unique, fine-tuned analysis across documents including legal documents, financial documents and news articles.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Are you making the most of the business-critical structured data stored in your mainframes?

Fewer than 30% of companies think that they can fully tap into their mainframe data even though complete, accurate and real-time data is key to business decision-making, compliance, modernisation and innovation. For many in financial markets, integrating data across the enterprise and making it available and actionable to everyone who needs it is extremely difficult....

BLOG

Why your Technology Spend isn’t Delivering the Productivity you Expected

By Gareth Evans, Chief Product Officer, FINBOURNE. An uncomfortable truth: technology spend in asset management has surged 8.9% annually over the past five years across North America and Europe. But productivity? Flat. Cost as a share of assets under management (AUM)? No improvement. Operational expenses in other functions? Despite the promises that technology would create...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...