About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Data Governance “Poorly Practised”

Subscribe to our newsletter

The concept of data governance is one much bandied about in EDM circles, especially as the notion of purely centralised data management morphs into a more pragmatic strategy of centralised control over distributed data stores. But, as is well documented in a new white paper written by Baseline Consulting and sponsored by master data management hub provider Siperian, putting data governance into practice is no mean feat.

As the author, Baseline partner Jill Dyche, writes: “The goal of data governance is to establish and maintain a corporate-wide agenda for data, one of joint decision making and collaboration for the good of the company. It’s a joint effort between the business and IT, and one that’s so far been at best misunderstood, and at worst poorly practised.”

There are several reasons for the failure of data governance, Dyche says, including relying on IT and business data managers to bring data governance to life. “These individuals… may… lack the organisational clout to influence development and participation in a business-sanctioned data governance undertaking.” Another is that data governance councils tend “to simply fade away”.
Baseline recommends a four step process to create a sustainable data governance framework. First, design the data governance, establishing guiding principles, decision rights and decision making bodies. Second, overcome organisational barriers. Third, enact and oversee. Refine goals and resources and communicate performance results. Four, deliver and measure benefits.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

Modern Data Platforms Empower Critical Use Cases: Webinar Preview

No longer is it enough for financial institutions to be simply “on top” of their data management architecture. They need to be constantly looking for the next innovation to keep them ahead of the game in this fast-moving space. That’s why modern data management platforms are the focus of so many organisations at the moment....

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Enterprise Data Management, 2009 Edition

This year has truly been a year of change for the data management community. Regulators and industry participants alike have been keenly focused on the importance of data with regards to compliance and risk management considerations. The UK Financial Services Authority’s fining of Barclays for transaction reporting failures as a result of inconsistent underlying reference...