About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

The Front Office is Not Your Enemy, it’s Your Client, Says WestLB’s Eldridge

Subscribe to our newsletter

In order to receive management buy-in, data management teams need to treat the front office as a client rather than as an enemy, said Michael Eldridge, head of European operations control at WestLB. “We need to dispel the myth that centralised data management is a luxury, build a better business case for investment by measuring the real cost of bad data and treat the front office as a client and better meet their needs,” he told FIMA 2008 delegates.

There needs to be a cultural shift in data management in order to more effectively approach senior management when attempting to get funding. Data management has traditionally been overlooked and understated, explained Eldridge, and this will continue if no action is taken to deal with underlying issues. “We unknowingly contribute to the myth that data centralisation and automation is a luxury by being too focused on the technical aspects of data. We need to instead focus on how data contributes to a firm’s P&L,” he suggested.

The real cost of bad data on institutions is measurable, he argued, giving examples such as the downstream impact of bad data in futures and options rules, which could result in missed options, and inaccurate data in currency and settlement accounts, which could result in late payments. “We need to look at what we provide and its measurable impact on the front office,” he added.

“The real areas of interest to senior management and the front office are levels of costs of exception management and of errors and claims,” he said. “We have not traditionally looked at our error rates in the same manner as other parts of the business, but this needs to be done.”

Eldridge recommended the use of a simple formula to achieve management buy-in: produce measures of technical structures (such as data volumes) plus operational risks (such as error rates), which equals data’s value to an organisation. “Another key part of this is treating the front office as you would an external client,” he said. “In order to better service them, we need to understand them.”

Rather than using technical jargon and confusing front office staff, data management teams should act as the vendors to their front office clients. Eldridge acknowledged that this would represent a significant attitude shift but warned that delegates must take heed in order to push data management projects up the corporate agenda.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: End-to-End Lineage for Financial Services: The Missing Link for Both Compliance and AI Readiness

The importance of complete robust end-to-end data lineage in financial services and capital markets cannot be overstated. Without the ability to trace and verify data across its lifecycle, many critical workflows – from trade reconciliation to risk management – cannot be executed effectively. At the top of the list is regulatory compliance. Regulators demand a...

BLOG

Alkymi Sees Rapid Growth After Founders Bet Early on Privates and AI

When Harald Collet co-founded Alkymi in 2017, he could see which way the wind was blowing in private and alternative assets, especially their growing interest to traditional capital markets participants. He could also sense the burgeoning demand for artificial intelligence applications within the investment space. And so it was that Alkymi was born almost fully...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Entity Data Management Handbook – Seventh Edition

Sourcing entity data and ensuring efficient and effective entity data management is a challenge for many financial institutions as volumes of data rise, more regulations require entity data in reporting, and the fight again financial crime is escalated by bad actors using increasingly sophisticated techniques to attack processes and systems. That said, based on best...