About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How ‘Deep Learning’ Could Make A Deep Impact On Trading

Subscribe to our newsletter

As a machine learning technique, “deep learning” has evolved enough to be useful for trading operations, according to Elliot Noma, managing director at Garret Asset Management. Noma will be moderating a panel on the uses and limitations of the technique, at the Intelligent Trading Summit in New York on June 8.

Deep learning expands on neural nets, which simulate the levels of communication within the human brain — the same neural communications that lead to the decisions comprising consciousness, Noma explains. Neural nets previously only had one or two layers, while deep learning-capable neural nets can have as many as 100 layers, which make these networks better suited for working on large sets of data, he adds.

“The error rates for neural nets on classifying images had been around 30 percent,” says Noma. “Over the past few years, using the technology for deep learning, the error rates have come down to the same as human beings — no more than 5 percent.”

With each layer in a deep-learning network containing hundreds of simulated neurons, and 100 or more layers possible, such a network can “assess large amounts of data, and be trained on multiple different types of data sets,” says Noma. “Different results from different models can be connected together.”

New data sets keep arriving, including Twitter feeds, sentiment analysis, political and government statements, satellite data and other social media information. Deep learning can analyse all of these data sets, and compare the resulting analyses. Deep learning can also add analyses into multiple models that a firm is using.

“The key terms are boosting, bagging and stacking, which allow you take different large data sets, combine them in different ways, combine the analyses in different ways and adjust the analyses so if a previous analysis has mistakes, the neural nets catch and correct those mistakes,” says Noma.

For trading operations, deep learning networks can back-test new data sets and examine how they fit among all the available data. “You used to have to hire an analyst or assign an analyst to learn about the data, understand how to clean the data, and understand how the data fits with other data sets,” he says.

However, trading operations managers must put some guidance and care into implementation of deep learning technology, Noma explains. “With any powerful technique, you must have some idea of what it can do and what its limitations are,” he says. “You need access to someone who has that experience, whether that’s homegrown or external, to understand what the appropriate applications are for variations.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline and modernise the trader desktop are gaining a tangible edge – both in speed...

BLOG

Growing Modern Data Platforms Adoption Seen as Benefits Become Apparent: Webinar Review

Take-up of modern data platforms (MDPs) is expected to accelerate in the next few years as financial institutions realise the greater agility, scalability and deeper insights offered by the innovation. Organisations that have so far been relatively slow to adopt the streamlined platforms – because they have been unsure of the technologies’ benefits – will...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Institutional Digital Assets Handbook 2023

After initial hesitancy, interest in digital assets from institutional market participants has grown over the past three to four years. Early focus inevitably centred on the market opportunities presented by bitcoin and other cryptocurrencies. But this has evolved into a broad acceptance of a potentially meaningful role for digital assets in institutional markets. It’s now...