About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Datawatch Adds Panopticon Streams Real-Time Stream Processing Engine

Subscribe to our newsletter

Datawatch has increased the speed of real-time streaming and time series data analytics with stream processing engine Panopticon Streams. The engine can be used as a stand-alone solution or in conjunction with Panopticon’s Visual Analytics platform.

Peter Simpson, vice president of visualisation strategy at Datawatch Panopticon, says: “Capital markets customers will benefit from Panopticon Streams’ support of several key use cases, including best execution, real-time P&L, transaction cost analysis and trader and trading surveillance.

“The addition of the engine’s capabilities means we now offer a general purpose streaming analytics platform. It has applications anywhere organisations need to identify anomalies and outliers, investigate their causes, back test potential solutions, and then alter their business processes to address the issue. Given the software’s ability to handle real-time and time series data, we believe it will be most useful in electronic trading, telecommunications, energy, and IoT applications.”

The combination of stream processing, rapid data comprehension through visual analysis, faster investigation through time series analysis and playback down to the individual tick, is designed to help organisations make timely, more informed decisions that have immediate financial impact.

Built on the Apache Kafka platform, Panopticon’s solutions enable business users to build sophisticated Kafka data flows with no coding. Users who understand the business problems can create their own data flows, which can use information from a number of sources and incorporate joins, aggregations, conflations, calculations, unions and mergers, and alerts. Analysts can visualise processed data using Panopticon Visual Analytics and deliver it to Kafka, Kx kdb+, InfluxDb, or any SqL database.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

Bloomberg Enhances RMS Enterprise to Unlock Proprietary Models and Strengthen Research Oversight

Bloomberg has announced significant enhancements to its enterprise-level Research Management Solution (RMS Enterprise), introducing two new capabilities: Custom Fundamentals and Digest Alerts. The updates are designed to address long-standing data interoperability challenges within investment firms, allowing research teams to better integrate proprietary financial models into their workflows and strengthen oversight across their organisations. For many...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Best Practice Client Onboarding

Client onboarding is central to the success of banks, yet it continues to present challenges and the benefits of getting it right are difficult to achieve. The challenges arise from siloed systems, manual processes and poor entity data quality. The potential benefits of successful implementation include excellent client experience, improved client acquisition and loyalty, new business opportunities, reductions in costs, competitive advantage, and confidence in compliance.