About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Bloomberg Offers Guidance on Getting Data Annotation Right for Machine Learning

Subscribe to our newsletter

Machine learning has become essential to financial institutions seeking timely business insight and signals of opportunity and risk across the business. At many firms, the technology is being scaled and use cases are proliferating. There are limitations, however, with useful outcomes from machine learning models depending on high quality data that is annotated accurately and consistently.

Data annotation probably isn’t the first thing that comes to mind when considering machine learning projects, but it is crucial to success and often difficult to achieve. With this in mind, Bloomberg has pulled together its expertise in annotation and published it for the use of other organisations.

The publication, Best Practices for Managing Data Annotation Projects, provides a practical guide to planning, executing, and evaluating the annotation step in machine learning projects. It was authored by Amanda Stent, natural language processing (NLP) architect in the office of the CTO; Tina Tseng, legal analyst with Bloomberg Law; and Domenic Maida, chief data officer, global data.

Key considerations of data annotation covered by the publication include, how to:

  • Identify stakeholders that should be involved in a project
  • Decide on datasets to be included in the project
  • Write and share annotation guidelines
  • Select an annotation tool
  • Test annotation for correct results and edge cases
  • Select the right team for each project based on the data
  • Ensure consistent communication across the team
  • Manage time and budget to ensure all project data is covered
  • Evaluate annotation quality at the end of the project.

The authors note that data annotation projects are ongoing processes rather than one-off tasks, and acknowledge the need for a human in the loop ‘as we have more contextual value than computers’.

Bloomberg’s expertise in annotation is built on the need to understand different types and formats of data that flow through its data pipelines and analytics, including earnings releases and tables, PDFs of filings, news articles, and ever-changing information about stocks, maturity dates of bonds, foreign exchange rates, and commodity prices. The company uses and contributes to the open source tool pybossa for data annotation.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Mastering Data Lineage for Risk, Compliance, and AI Governance

Financial institutions are under increasing pressure to ensure data transparency, regulatory compliance, and AI governance. Yet many struggle with fragmented data landscapes, poor lineage tracking and compliance gaps. This webinar will explore how enterprise-grade data lineage can help capital markets participants ensure regulatory compliance with obligations such as BCBS 239, CCAR, IFRS 9, SEC requirements...

BLOG

AI Governance Frameworks Are Emerging as Applications Abound: Webinar Review

Capital markets leaders are in the early stages of implementing comprehensive artificial intelligence governance frameworks as they begin to realise the challenges as well as the opportunities offered by the technology. As the adoption of AI accelerates it’s becoming apparent that it needs its own set of rules on how it can be effectively and...

EVENT

Eagle Alpha Alternative Data Conference, Spring, New York, hosted by A-Team Group

Now in its 8th year, the Eagle Alpha Alternative Data Conference managed by A-Team Group, is the premier content forum and networking event for investment firms and hedge funds.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...