About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

The Model Muddle

Subscribe to our newsletter

By Richard Moss, Product Manager, AxiomSL.

Many financial institutions (FIs) find themselves wondering how they became mired in a credit model muddle that is dragging down their profitability. They want to know how they can get out of this swamp.

Traditionally, FIs heavily relied on economic capital models to support business decision-making. Then, with the financial crisis precipitating a slew of new regulations, FIs were forced to lean away from economic capital models to right-size the capital requirements imposed upon them. Today, the divide between economic and regulatory capital is larger than it has ever been.

In response to regulatory capital requirements, FIs now seek to invest in businesses with lower regulatory capital commitments, clustering their investments into similar businesses that promise to deliver a higher ROE. When many FIs abandon their core strengths to focus on such investments, systemic risk builds, profit margins narrow, and fresh concerns arise as FIs enter somewhat unfamiliar territory.

Consequently, maximising shareholder value has become a direct function of efficiency improvements and optimal resource management. Assessing and perfecting the risk model execution framework is a key part of that objective.

Most large FIs use the internal ratings based (IRB) approach in an effort to optimise capital. However, developing custom-built IRB credit risk models is complex. Hence, many FIs have been forced to invest heavily in the services of third-party consultancy firms that essentially monopolise a niche – developing and maintaining these models.

FIs pay a price. Initial and recurring investments costs are high. But because the model execution process is effectively a black box, they also suffer negative impacts on decision-making due to lack of transparency.

Thus, the model muddle in which many FIs find themselves!

To escape the mire, FIs today can consider a fresh, unconventional approach: building a credit risk model framework using open-source language and integrating it seamlessly with regulatory reporting requirements. This approach provides the FI with in-house control, reduces cost commitments and gives them much needed visibility into the process.

With model ownership transferred to an in-house team, FIs can easily scrutinise techniques and approaches in finer detail, thereby improving governance. With this level of transparency, comes the ability to develop more bespoke, complex, and refined models for myriad, ever changing capital reporting requirements. Building with open-source language means that third-party consultancies become redundant. No longer is there the need to sustain year-on-year licensing costs for their platform, upgrades, or patches.

Credit risk models form the foundation of risk reporting and are the very core of regulatory requirements such as counterparty credit risk (CCR) and IFRS 9. By adopting this innovative, transparent approach, FIs:

  • Reduce total cost of ownership (TCO)
  • Maximise shareholder value
  • Strengthen traceability and governance processes
  • Satisfy regulatory scrutiny through enhanced controls
  • Improve time to market

Further, improved data lineage not only fosters development of valuable, actionable in-house knowledge but also underpins BCBS 239 compliance.

IRB and credit risk models built using open-source language and managed internally provide the missing link that makes it possible to seamlessly create an end-to-end risk reporting process. By adopting this unconventional approach, FIs can leave the model muddle behind.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Hearing from the Experts: AI Governance Best Practices

The rapid spread of artificial intelligence in the financial industry presents data teams with novel challenges. AI’s ability to harvest and utilize vast amounts of data has raised concerns about the privacy and security of sensitive proprietary data and the ethical and legal use of external information. Robust data governance frameworks provide the guardrails needed...

BLOG

FinCEN Issues New Guidance on SARs : Less Box-Ticking, More Signal

The Financial Crimes Enforcement Network (FinCEN), together with the Federal Reserve, Federal Deposit Insurance Corporation (FDIC), National Credit Union Administration (NCUA), and the Office of the Comptroller of the Currency (OCC), recently issued new guidance clarifying how financial institutions should approach the filing of Suspicious Activity Reports (SARs), see Frequently Asked Questions Regarding Suspicious Activity...

EVENT

Eagle Alpha Alternative Data Conference, London, hosted by A-Team Group

Now in its 8th year, the Eagle Alpha Alternative Data Conference managed by A-Team Group, is the premier content forum and networking event for investment firms and hedge funds.

GUIDE

The DORA Implementation Playbook: A Practitioner’s Guide to Demonstrating Resilience Beyond the Deadline

The Digital Operational Resilience Act (DORA) has fundamentally reshaped the European Union’s financial regulatory landscape, with its full application beginning on January 17, 2025. This regulation goes beyond traditional risk management, explicitly acknowledging that digital incidents can threaten the stability of the entire financial system. As the deadline has passed, the focus is now shifting...