About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Implement Strategies, Standards and Technologies for Best Practice Customer Data Management

Subscribe to our newsletter

Getting customer data right has been a problem for financial institutions for many years, but it is beginning to ease as regulation drives data aggregation underpinned by data governance, data standards emerge, and technologies replace manual processes. Getting management buy-in to improve customer data has also moved on and become more persuasive as conversations about regulatory compliance have yielded to discussions about business benefits and cost savings.

During a fireside chat at A-Team Group’s recent Data Management Summit Virtual, Lorraine Waters, CDO at Solidatus, talked to Allie Harris, CDO for global banking and markets at Scotiabank, and an expert and practitioner in the customer data space.

Talking first about what is changing the data that needs to be captured around customer information, Harris noted the continuing influx of regulation requiring data sourcing and management for compliance, and equally importantly growing need to provide accurate data to the business. She touched on the customer 360 concept as a means of ensuring all business lines that are working with the same customers have the same view of the information and it is not siloed for business purposes.

Describing Scotiabank’s approach to client data, she said: “In my shop, we have a large platform that brings our client data into one place, but the biggest job we have is really not the technical play, it’s all the processes that are creating the data and aligning it. If, say, you are doing KYC in three businesses, you can have a lot of systems that are silos. So, we bring these together, and at the same time, from a data governance standpoint, we ask, Who is running your business processes? Whose are those processes? Are they in any alignment with any other areas’ processes? So, the long story short is we’ve got a great platform for aggregation, for everything we need to do with client data, but underpinning all of that is the governance process, client identification and breaking the data down to critical data elements.”

Over the past 10 to 15 years, additional data needed includes the LEI, and most recently in the US. a requirement for beneficial ownership data under the Corporate Transparency Act. Canada has a similar requirement.

As lead of the Canadian delegation to the ISO and the convener of a working group on natural persons identification, Harris notes the LEI number that identifies a company, and says the group is looking at the Natural Person Identifier (NPI), which identifies a person and could be used here. She also touched on digital identity, and whether this would be led by banks or jurisdictions, and added: “What we do know is that we are going to be able to put these things together in a way that we haven’t previously, and this will give an amazing amount of business value if we capture it correctly.”

Responding to a question from Waters about the use of industry standards in customer data management, Harris cited not only the NPI, but also the emerging unique product identifier (UPI), classification of financial instruments (CFI), and the entity legal form code list that allows connection and aggregation of company form descriptors in different jurisdictions such as the LLC in Canada, SA in France and GmbH in Germany. She comments: “All of these new standards are things we are taking up and utilising as quickly as we can.” The benefits include the ability to deepen relationships with clients.

From a business perspective, Waters and Harris agreed that while compliance is important, the way to win business buy-in for projects is to first show positive business outcomes. One question is, ‘when you’ve got a process that you’re aligning, can you enhance the data within the process as opposed to just remediating it for regulatory purposes’.

Answering an audience question on the technologies used by Scotiabank to help it get customer data right, Harris listed semantic ontologies and knowledge graphs to reach into data and make connections that were not previously possible using data warehouses and data lakes; and optical character recognition (OCR), natural language processing (NLP), and robotic process automation (RPA) to pull data out of documents. She also noted gains from mastering client data using machine learning and AI, and using metadata and semantic ontologies for data ingestion, placement and consumption, which can accelerate traditional mapping and modelling. She concluded: “Machine learning is on the continuum to AI, so as we get better machine learning, it can then start to inform some of our truer AI models.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: An Agile Approach to Investment Management Platforms for Private Markets and the Total Portfolio View

11 June 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes Data and operations professionals at private market institutions face significant data and analytical challenges managing private assets data. With investors clamouring for advice and analysis of private markets in their search for returns, investment managers are looking at ways to gain...

BLOG

Reporting Seen Among Use Cases Benefiting from Cloud-based Data Management for AI

Artificial intelligence is being adopted by financial regulators at pace, putting pressure on the financial institutions that the overseers serve to double down on their reporting capabilities. It’s no surprise to find that the same AI that’s helping regulators can aid organisations in getting those reporting procedures in place. To do so, however, they need...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...