About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Implement Data Quality Metrics that Deliver for the Business

Subscribe to our newsletter

Data quality metrics are essential to financial firms and can deliver significant operational benefits that are increasingly driven by emerging technologies such as machine learning. The business case for metrics, best approaches to implementation, and the potential of technology to improve both data quality and metrics were discussed during a recent A-Team Group webinar, Using Metrics to Measure Data Quality.

The webinar was moderated by A-Team editor, Sarah Underwood, and joined by Sue Geuens, president of DAMA and head of data standards and best practice adoption at Barclays; Mark Wilson, head of data quality UK at Handelsbanken; and John Randles, CEO at Bloomberg PolarLake. Setting the scene, an audience poll showed a large majority of respondents saying data quality metrics are very important across all data or across some data.

The speakers responded to the poll noting that metrics are key to the success of a data management programme and can also highlight poor data. Considering what is meant by data quality and the requirement for metrics, Randles commented: “Data quality is about whether a dataset is good enough for a particular application. Combining the definition of an appropriate dataset with metrics makes it possible to measure the tolerance of the data for the application.”

Looking at the business case for data quality metrics and a data quality programme, Wilson said: “There is the stick approach to keep regulators happy, but you are taking your eye of the ball if you follow that approach. You need to build a case around outcomes for the business, such as customer satisfaction and retention.” Geuens added: “If you align data quality and metrics with business strategy, and do it well, regulatory requirements will fall into place.”

On delivering data quality metrics that are relevant to the business, Randles explained: “It’s important when planning data metrics to make sure the business can understand the purpose of the data. Then you can add data quality scores. When you can expose that kind of metric, users can have confidence in the data before it is used or understand whether it needs to be improved. This keeps metrics fresh and alive.”

On the question of what firms should measure, Geuens said: “It’s easy to measure data accuracy across fields. But this is the wrong answer. You need to measure how quality has got better in terms of what the data is used for. For example, is the data more useful to an application when it is cleaned and validated?”.

Turning to technology, an audience poll showed 33% of respondents expecting to implement machine learning to improve data quality metrics, 28% third-party services, 23% vendor monitoring solutions and 19% artificial intelligence. Some 25% said they would implement no additional technology.

Final advice from the speakers on implementing data quality metrics included: talk to the business rather than IT; pick pain points affecting the business and deliver a successful solution to gain more interest; and publish metrics, statistics and reports to attract management attention.

Listen to the webinar to find out about:

  • Requirements for data quality metrics
  • Best practice implementation
  • Quick wins for the business
  • Emerging technology solutions
  • Benefits of metrics
Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

Private Markets Data Opportunities Under the Microscope: Webinar Preview

As institutional asset managers accelerate their allocations into private markets, they often find themselves facing an alien landscape when it comes to data. Used to the data-driven systems that power public capital markets, investors in private markets, including private equity and private credit as well as alternatives such as property, must contend with greater opacity,...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Data Lineage Handbook

Data lineage has become a critical concern for data managers in capital markets as it is key to both regulatory compliance and business opportunity. The regulatory requirement for data lineage kicked in with BCBS 239 in 2016 and has since been extended to many other regulations that oblige firms to provide transparency and a data...