About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Extract Value from Unstructured Data

Subscribe to our newsletter

Unstructured data offers untapped potential but the platforms, tools and technologies to support it are nascent and are often deployed for a specific problem with little reuse of common technologies from application to application.

The challenges of managing and analysing unstructured data, and considerations when making investments in the data, were discussed during a panel session at A-Team Group’s recent Data Management Summit in New York City. The panel comprised Gerry Mintz, managing partner of Percepta Partners; Matt Good, chief technology evangelist at Kingland; Steve Grill, managing director, head of legal data services, research and data management (formerly JP Morgan); Evan Schnidman, president, Prattle, a Liquidnet Company; and Gurraj Singh Sangha, global head of risk and market intelligence at State Street.

The key takeaways from the panel were the levels of fragmentation and complexity of unstructured data in the market, and the importance of meticulousness in approach and expertise in execution. “In terms of technology, we are finding that the space is very fragmented,” said one panellist. “Folks might say that there are a lot of vendors in the text analytics and language processing space, but the big players are making investment bets in lots of different spaces. All of these big tech vendors are providing you with the toolkit capabilities to go and potentially build these solutions yourselves. AWS Amazon just last year offered new services around extraction of text, for example. But there is still the problem that you need a full solution to meet the business use case.”

“Domain expertise matters. It’s that simple,” added another panellist. “Being an expert in financial services gives you an insight into what documents matter, what correlations you need to be looking for, and what language patterns you want to find in an earnings call. When you start digging into complex language that has real indications for KPIs you need an analyst in the room, you need to know what to look for. And unless you have specialist knowledge about both the natural language processing side and the financial services implications, the odds are that you are going to be operating in an atheoretical vacuum that is going to result in spurious correlation that breaks down pretty much as soon as you get out of sample.”

“The key word is knowledge,” agreed a third. “Unstructured data is all about knowledge. That’s how it differs from structured data, which is all about information. It’s not about just collecting data, it’s about understanding what the data means, organising it in a way that people can understand, and explaining how it applies specifically to the firm.”

The panel agreed that a key issue is that machine learning tends to be very abstract. There are nuances in language – context, interpretation and so on. When you are training algorithms for any use case, it can be challenging to process information to an ontology to connect various facets of information to specific situations in the marketplace.

“It is important when you are going down this path to move slowly,” concluded the panel. “Just processing language in and of itself can open up many wrong directions. When you are applying it to risk, ingesting an enormous amount of information connected to portfolios, it is inordinately complex.”

Ultimately, the advice is to proceed cautiously and be careful of bias, be careful of subjectivity, and be careful of interpretation. “It’s about having an excellent ecosystem with people and technology, and finding some early victories. The ability to find opportunities to automate even just some of the routine will help you – just a little bit here, a little bit there – all of that adds up to excellent knowledge work, and you’ll soon be on your way to showing some return on investment in this space.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

Data Standards Bring Many Gains (If You Have the Right Setup): Webinar Review

Standards and identifiers are helping to improve the quality of data used by capital market participants, but organisations with legacy architectures are finding it challenging to capitalise on those benefits, according to polls by A-Team Group. Half of respondents to surveys held during a recent A-Team Group Data Management Insight webinar said that data standardisation...

EVENT

RegTech Summit New York

Now in its 9th year, the RegTech Summit in New York will bring together the RegTech ecosystem to explore how the North American capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...