About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

CQG Unveils AI Predictive Model for Traders in Futures Market, Tested at 80% Accuracy

Subscribe to our newsletter

CQG, the financial markets technology solutions provider, has announced the successful completion of testing of its artificial intelligence (AI) predictive model for traders, boasting an impressive 80% accuracy rate in forecasting the future movements of the E-mini S&P 500 futures contract.

The newly developed machine learning (ML) toolkit is designed to provide retail traders and institutional clients, such as proprietary trading firms and hedge funds, with cutting-edge tools for identifying trading opportunities, guiding trading strategies, and managing positions effectively.

CQG’s started developing the model in early 2023, which leverages CQG’s repository of historical trade data and analytics, and addresses several real-world challenges, including the management of large volumes of data, integrating CQG’s Python-based ML infrastructure with the financial industry’s C++ frameworks, and refining the ML training pipeline for time series prediction.

“We intentionally steered clear of the widespread natural language processing technologies, impressive as they are,” Ryan Moroney, CQG’s CEO, tells TradingTech Insight. “When we set up our AI lab last year, our focus was to capitalise on our expertise in handling time series and market data, along with the analysis of specific trading patterns. Our next tick predictor, which forecasts market movements with 80% accuracy, serves as a tangible validation of our efforts.”

The model was rigorously tested it in a multi-platform laboratory environment before its capabilities were validated in a live trading scenario last week, where it mirrored the 80% predictive success rate it had previously achieved in back-testing environments.

“One practical application of our technology is to enhance the effectiveness of our algorithms, particularly for those who frequently trade in derivatives contracts and are looking to minimise slippage,” says Kevin Darby, Vice President of Execution Technologies at CQG. “By integrating this technology, our algorithms become significantly more efficient in accumulating futures contracts for users.”

“We help people use time series data to make trading decisions,” says Moroney. “We don’t tell people what those decisions should be. We don’t tell them what they should do next. We don’t give advice. We’re a technology company that gives users tools to make better decisions. Predicting the next tick is one application of that. Ultimately, our goal is to place our robust infrastructure – encompassing advanced math engines, AI models, and comprehensive market data – into our customers’ hands, enabling them to innovate and develop their own solutions.”

The company is now exploring additional applications of its AI toolkit in collaboration with key partners.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline and modernise the trader desktop are gaining a tangible edge – both in speed...

BLOG

Bloomberg Enhances RMS Enterprise to Unlock Proprietary Models and Strengthen Research Oversight

Bloomberg has announced significant enhancements to its enterprise-level Research Management Solution (RMS Enterprise), introducing two new capabilities: Custom Fundamentals and Digest Alerts. The updates are designed to address long-standing data interoperability challenges within investment firms, allowing research teams to better integrate proprietary financial models into their workflows and strengthen oversight across their organisations. For many...

EVENT

TradingTech Summit London

Now in its 15th year the TradingTech Summit London brings together the European trading technology capital markets industry and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

Institutional Digital Assets Handbook 2024

Despite the setback of the FTX collapse, institutional interest in digital assets has grown markedly in the past 12 months, with firms of all sizes now acknowledging participation in some form. While as recently as a year ago, institutional trading firms were taking a cautious stance toward their use, the acceptance of tokenisation, stablecoins, and...