A-Team Insight Blogs

Refinitiv Reviews Potential of Machine Learning and Problems of Data Quality

Share article

Machine learning and artificial intelligence (AI) have moved beyond the experimental stage to become core components of business strategy and investment. Key use cases include risk management, performance analysis and trading idea generation, ahead of automation and cutting costs. The whole is driven by growing numbers of data scientists employed by financial organisations.

The barriers to adoption and implementation, as in so many cases, include poor data quality and availability, incomplete records, lack of capacity to manage the size and frequency of data, and cleaning and normalising the data. A lack of funding can also stymie adoption. Further difficulties include a mismatch between the boardroom and data scientists, with C-level professionals believing it is important to be seen using the latest tools for competitive advantage, and data scientists under pressure to deliver on the promise of machine learning while facing organisational constraints at ground level.

These are some of the headlines from research into AI and machine learning by Refinitiv that was published this week in the first of a series of annual reports on technology innovation, and led the company to suggest that AI will be the single greatest enabler of competitive advantage in the financial services sector.

Considering some of the key results of the research, Amanda West, head of innovation enablement in Refinitiv’s applied innovation team, comments: “The importance of getting to grips with data quality and helping solve this for customers is not surprising. What we hadn’t anticipated was the rate and level of operational adoption of machine learning shown by the research, and a primary use case of risk management rather than expected cost take out.”

Other results from the research show the buy-side leading the sell-side in making machine learning part of business strategy, alternative data and unstructured data becoming significant subjects of machine learning alongside market and internal company data, and data scientists being predominantly consolidated into a few teams rather than being distributed across a number of teams.

From a geographic perspective, financial services professionals in North America are more advanced than those in Europe and Asia as a result of the largest financial services organisations being headquartered in the region, initial innovation coming largely from local universities, and the financial market being more homogeneous than in the rest of the world. That said, Refinitiv suggests these reasons behind North American leadership are eroding.

The research for the Refinitiv report was carried out by Coleman Research in December 2018 and included 447 telephone interviews with data science practitioners and C-level data science decision makers in financial institutions with annual revenue of more than $1 billion.

The survey was global and included only participants from organisations that were using machine learning (98% of participants) or intending to do so in future (2%).

Leave a comment

Your email address will not be published. Required fields are marked *

*

Related content

WEBINAR

Recorded Webinar: How to turn data lineage from a regulatory response into a business advantage

Regulatory initiatives increasingly require firms to put in place robust data lineage frameworks to aid in understanding the workings behind reported values. But data lineage can add business value beyond regulatory compliance. As they move to automate data lineage processes by incorporating metadata management into their frameworks, firms can start to benefit from enhanced data...

BLOG

COVID 19: Services Directory

As the coronavirus crisis extends into the medium to long-term, technology vendors and solutions providers are stepping up to the plate with a wide variety of services and support for clients to assist them through the data management challenges presented by the new operational and working environment. Below, you can find these collated into an...

EVENT

RegTech Summit Virtual

We’re thrilled to introduce you to our new RegTech Summit Virtual event. Yes that’s right, all the fantastic content shared by A-Team’s unique community of practitioner experts that you’ve come to know and love from our RegTech Summit live events in London is now going to be made available to you online, so you can watch or listen at your leisure – whether that’s in your office, on your commute, or from the comfort of your own home.

GUIDE

Entity Data Management Handbook – Sixth Edition

High-profile and punitive penalties handed out to large financial institutions for non-compliance with Anti-Money Laundering (AML) and Know Your Customer (KYC) regulations have catapulted entity data management up the business agenda. So, too, have industry and government reports on the staggering sums of money laundered on a global basis. Less apparent, but equally important, are...