A-Team Insight Blogs

Refinitiv Reviews Potential of Machine Learning and Problems of Data Quality

Share article

Machine learning and artificial intelligence (AI) have moved beyond the experimental stage to become core components of business strategy and investment. Key use cases include risk management, performance analysis and trading idea generation, ahead of automation and cutting costs. The whole is driven by growing numbers of data scientists employed by financial organisations.

The barriers to adoption and implementation, as in so many cases, include poor data quality and availability, incomplete records, lack of capacity to manage the size and frequency of data, and cleaning and normalising the data. A lack of funding can also stymie adoption. Further difficulties include a mismatch between the boardroom and data scientists, with C-level professionals believing it is important to be seen using the latest tools for competitive advantage, and data scientists under pressure to deliver on the promise of machine learning while facing organisational constraints at ground level.

These are some of the headlines from research into AI and machine learning by Refinitiv that was published this week in the first of a series of annual reports on technology innovation, and led the company to suggest that AI will be the single greatest enabler of competitive advantage in the financial services sector.

Considering some of the key results of the research, Amanda West, head of innovation enablement in Refinitiv’s applied innovation team, comments: “The importance of getting to grips with data quality and helping solve this for customers is not surprising. What we hadn’t anticipated was the rate and level of operational adoption of machine learning shown by the research, and a primary use case of risk management rather than expected cost take out.”

Other results from the research show the buy-side leading the sell-side in making machine learning part of business strategy, alternative data and unstructured data becoming significant subjects of machine learning alongside market and internal company data, and data scientists being predominantly consolidated into a few teams rather than being distributed across a number of teams.

From a geographic perspective, financial services professionals in North America are more advanced than those in Europe and Asia as a result of the largest financial services organisations being headquartered in the region, initial innovation coming largely from local universities, and the financial market being more homogeneous than in the rest of the world. That said, Refinitiv suggests these reasons behind North American leadership are eroding.

The research for the Refinitiv report was carried out by Coleman Research in December 2018 and included 447 telephone interviews with data science practitioners and C-level data science decision makers in financial institutions with annual revenue of more than $1 billion.

The survey was global and included only participants from organisations that were using machine learning (98% of participants) or intending to do so in future (2%).

Leave a comment

Your email address will not be published. Required fields are marked *

*

Related content

WEBINAR

Recorded Webinar: Listen to two buy-side CDOs discussing how to get data management right

Is your firm struggling to get cost-efficient data management in place to meet both strategy and regulatory requirements? Could innovative data management help to deliver much-needed business growth at your firm? Are you short of resources and skills to implement best practice data management? If your answer to any of these questions is yes, you...

BLOG

Data Management Insight – All the News, Insight and Information You Need

Welcome to Data Management Insight (DMI), a dedicated section of A-Team Group’s exciting new website that will keep you up to date with all that’s new in data management across capital markets, give you exclusive insights into hot topics, and provide you with information that will add value to your work. Over the coming weeks...

EVENT

Data Management Summit New York City

Now in its 8th year, the Data Management Summit (DMS) in NYC explores the shift to the new world where data is redefining the operating model and firms are seeking to unlock value via data transformation projects for enterprise gain and competitive edge.

GUIDE

Entity Data Management Handbook – Fifth Edition

Welcome to the fifth edition of A-Team Group’s Entity Data Management Handbook, sponsored for the fourth year running by entity data specialist Bureau van Dijk, a Moody’s Analytics Company. The past year has seen a crackdown on corporate responsibility for financial crime – with financial firms facing draconian fines for non-compliance and the very real...