About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

QuantHouse Offers Historical Data on-Demand to Algo Traders

Subscribe to our newsletter

QuantHouse has released Historical Data on-Demand, a service designed to speed up the research, development and back-testing phase of any trading strategy, and allow clients to implement new trading ideas within days rather than weeks or months.

The company is offering up to 10 years of historical data on-demand for the US, European and Asia-Pacific markets. Access to the data is available via a web portal, so clients can search for the data they need and purchase it online using a web browser of choice. The historical datasets purchased are delivered as flat files and are available for immediate integration into any system, without the need to integrate an API. Historical data can be replayed over prior time periods with the results being refined and adjusted to optimise trading performance.

While the time taken to fulfil the research, development and back-testing cycle of a trade can push execution beyond optimal timings, QuantHouse says giving research and development teams Historical Data on-Demand will enable them to rapidly test new and current trading strategies, and detect potential losses or degradation of the strategies within days, not weeks.

Stephane Leroy, chief revenue officer and co-founder of QuantHouse, explains: “The trading landscape has changed significantly in the past few years, it is no longer about how fast your trades are sent, but how quickly your trading strategy can be ready. To move away from speed trading to smart trading, you need access to trusted, reliable and consistent data on-demand, so that you can spot changes and emerging patterns in the market quickly and evaluate and adjust your trading strategy accordingly. Our Historical Data on-Demand service gives clients an advantage by moving them into a much more real-time environment.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

Buy & Build: Don’t Hire Picasso to Paint Your Living Room

On this episode of FinTech Focus TV recorded at A-Team Group’s Buy AND Build Summit, Toby Babb of Harrington Starr sits down with Paul Humphrey, CEO and Elliot Banks, CPO of BMLL to discuss how historical market data is reshaping trading technology. From the shift from build vs buy to build on trust, to why...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Entity Data Management & the LEI

Just over a year since the Financial Stability Board handed over leadership and direction of the interim Global Legal Entity Identifier System – or GLEIS – to the Regulatory Oversight Committee (ROC) of the LEI the entity identifier is being used for reporting under European Market Infrastructure Regulation. This report discusses recent developments in the...