About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Intelligent Trading Summit Considers Potential of Predictive Analytics and Machine Learning

Subscribe to our newsletter

Predictive analytics, machine learning and sentiment analysis are making their way into the trading environment, but how useful are they and will they provide a new model for intelligent trading? These questions and more will be discussed at next week’s A-Team Group Intelligent Trading Summit in New York.

Adrian Sharp, senior industry consultant, capital markets, Teradata, will moderate a panel session that will consider the potential of these emerging capabilities during the summit. He will be joined on the panel by Li Yang, vice president, lead of development, Citi; Philippe Burke, managing partner, Apache Capital; Antonio Hallak, CEO, Sibyl Trading; Steven Cohen, CEO, Gold Coast Advisors; and Yadu Kalia, worldwide business architect, financial services, IBM.

Moving on from high frequency algo trading, which is driven by speed but ultimately limited by system power, the panel will consider how the trading model may change over time to become less about speed and more about predictive analytics that could, perhaps, identify what might happen in the next 10 milliseconds.

Machine learning and sentiment analysis, which introduces unstructured data, also reduce speed. If these technologies are deployed in trading, a use case that includes a different view of time to that used in high frequency trading is required.

Sharp suggests there is a place in trading for machine learning, sentiment analysis and predictive analytics, but says it is difficult to find use cases for the technologies at the moment. He explains: “If machine learning, sentiment analysis and predictive analytics are applied to trading, the trading process changes and the model is different to that used for high frequency trading. The question is whether we are going to continue to exploit inefficiencies in the market or take a broader view over a longer time by bringing in more analytics.”

To find out more about:

  • Alternative trading models
  • The power of predictive analytics
  • Use cases for machine learning
  • Future trading developments

Register to attend the A-Team Intelligent Trading Summit.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

FINBOURNE Integrates Agentic AI via MCP to Enable Secure, Real-Time Investment Operations

FINBOURNE Technology has integrated with Claude, the large language model developed by Anthropic, via the Model Context Protocol (MCP), enabling secure, agentic AI across investment operations. The integration allows AI agents to access live investment data, automate workflows, and perform real-time actions while maintaining enterprise-grade governance, compliance, and auditability. Introduced in late 2023, MCP is...

EVENT

ExchangeTech Summit London

A-Team Group, organisers of the TradingTech Summits, are pleased to announce the inaugural ExchangeTech Summit London on May 14th 2026. This dedicated forum brings together operators of exchanges, alternative execution venues and digital asset platforms with the ecosystem of vendors driving the future of matching engines, surveillance and market access.

GUIDE

Enterprise Data Management, 2010 Edition

The global regulatory community has become increasingly aware of the data management challenge within financial institutions, as it struggles with its own challenge of better tracking systemic risk across financial markets. The US regulator in particular is seemingly keen to kick off a standardisation process and also wants the regulatory community to begin collecting additional...