About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Make the Most of Migrating Big Data and Analytics to Cloud

Subscribe to our newsletter

Migrating big data and analytics workflows to the cloud promises significant cost savings through efficient use of infrastructure resources and software that scales dynamically based on data volume, query load, or both. These are valuable gains for investment banks, but they can only be fully realised by taking a new approach to architecture and software engineering.

Next week’s Data Management Insight webinar will discuss the challenges of migrating to cloud and explain best practice approaches to making the most of moving big data and analytics to cloud. Webinar speakers include Peter Williams, head of partner technology, Global Financial Services, AWS; Ian Lester, vice president, senior principal developer, AI Labs, Nomura; and Daniel Seal, senior vice president, streaming analytics, KX.

Previewing the webinar discussion, Seal says: “To achieve a truly dynamic cloud environment that can scale limitlessly, banks need to transition from legacy architectures to software and databases that natively support horizontal distribution at geographic scale. Microservices architectures are key to this.”

As well as considering how to develop a microservices architecture, the webinar will discuss how to achieve faster delivery by changing your Software Development Lifecycle (SDLC) to support Continuous Integration/Continuous Deployment (CI/CD), and review the benefits you can expect to gain from a successful big data and analytics migration.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

Centralised Data Management Key to AI Success: Webinar Review

The absence of a centralised data management strategy for artificial intelligence is the biggest hurdle to integrating data from different sources for use with the technology. That was the finding of a survey of capital markets participants at a recent A-Team LIVE webinar “How to Organise, Integrate, and Structure Data for Successful AI”. While expert...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Entity Data Management Handbook – Second Edition

Entity data management is this year’s hot topic as financial firms focus on entity data to gain a better understanding of customers, improve risk management and meet regulatory compliance requirements. Data management programmes that enrich the Legal Entity Identifier with hierarchy data and links to other datasets can also add real value, including new business...