About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Make the Most of Migrating Big Data and Analytics to Cloud

Subscribe to our newsletter

Migrating big data and analytics workflows to the cloud promises significant cost savings through efficient use of infrastructure resources and software that scales dynamically based on data volume, query load, or both. These are valuable gains for investment banks, but they can only be fully realised by taking a new approach to architecture and software engineering.

Next week’s Data Management Insight webinar will discuss the challenges of migrating to cloud and explain best practice approaches to making the most of moving big data and analytics to cloud. Webinar speakers include Peter Williams, head of partner technology, Global Financial Services, AWS; Ian Lester, vice president, senior principal developer, AI Labs, Nomura; and Daniel Seal, senior vice president, streaming analytics, KX.

Previewing the webinar discussion, Seal says: “To achieve a truly dynamic cloud environment that can scale limitlessly, banks need to transition from legacy architectures to software and databases that natively support horizontal distribution at geographic scale. Microservices architectures are key to this.”

As well as considering how to develop a microservices architecture, the webinar will discuss how to achieve faster delivery by changing your Software Development Lifecycle (SDLC) to support Continuous Integration/Continuous Deployment (CI/CD), and review the benefits you can expect to gain from a successful big data and analytics migration.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to organise, integrate and structure data for successful AI

Artificial intelligence (AI) is increasingly being rolled out across financial institutions, being put to work in applications that are transforming everything from back-office data management to front-office trading platforms. The potential for AI to bring further cost-savings and operational gains are limited only by the imaginations of individual organisations. What they all require to achieve...

BLOG

Twelve Leading Data Lineage Solutions for Capital Markets

The ability to trace the journey of data from its origin to its final report is no longer a luxury but a regulatory and operational necessity. As firms grapple with the intensifying requirements of regulations such as BCBS 239, GDPR and the shifting landscape of MiFID II, the “black box” approach to data management has...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Impact of Derivatives on Reference Data Management

They may be complex and burdened with a bad reputation at the moment, but derivatives are here to stay. Although Bank for International Settlements figures indicate that derivatives trading is down for the first time in 10 years, the asset class has been strongly defended by the banking and brokerage community over the last few...