About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Make the Most of Migrating Big Data and Analytics to Cloud

Subscribe to our newsletter

Migrating big data and analytics workflows to the cloud promises significant cost savings through efficient use of infrastructure resources and software that scales dynamically based on data volume, query load, or both. These are valuable gains for investment banks, but they can only be fully realised by taking a new approach to architecture and software engineering.

Next week’s Data Management Insight webinar will discuss the challenges of migrating to cloud and explain best practice approaches to making the most of moving big data and analytics to cloud. Webinar speakers include Peter Williams, head of partner technology, Global Financial Services, AWS; Ian Lester, vice president, senior principal developer, AI Labs, Nomura; and Daniel Seal, senior vice president, streaming analytics, KX.

Previewing the webinar discussion, Seal says: “To achieve a truly dynamic cloud environment that can scale limitlessly, banks need to transition from legacy architectures to software and databases that natively support horizontal distribution at geographic scale. Microservices architectures are key to this.”

As well as considering how to develop a microservices architecture, the webinar will discuss how to achieve faster delivery by changing your Software Development Lifecycle (SDLC) to support Continuous Integration/Continuous Deployment (CI/CD), and review the benefits you can expect to gain from a successful big data and analytics migration.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking Transparency in Private Markets: Data-Driven Strategies in Asset Management

As asset managers continue to increase their allocations in private assets, the demand for greater transparency, risk oversight, and operational efficiency is growing rapidly. Managing private markets data presents its own set of unique challenges due to a lack of transparency, disparate sources and lack of standardization. Without reliable access, your firm may face inefficiencies,...

BLOG

Financial Markets Need Explainable Agents, Not Black Boxes

By Cédric Cajet, Product Director, NeoXam. Artificial intelligence (AI) is fast becoming the newest arms race in financial markets. From portfolio construction to risk modelling and client reporting, firms are racing to embed machine learning and generative AI into their operations. Whether it’s faster insights to make better investment decisions or the ability to reduce...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Entity Data Management Handbook – Sixth Edition

High-profile and punitive penalties handed out to large financial institutions for non-compliance with Anti-Money Laundering (AML) and Know Your Customer (KYC) regulations have catapulted entity data management up the business agenda. So, too, have industry and government reports on the staggering sums of money laundered on a global basis. Less apparent, but equally important, are...