About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Datawatch Adds Panopticon Streams Real-Time Stream Processing Engine

Subscribe to our newsletter

Datawatch has increased the speed of real-time streaming and time series data analytics with stream processing engine Panopticon Streams. The engine can be used as a stand-alone solution or in conjunction with Panopticon’s Visual Analytics platform.

Peter Simpson, vice president of visualisation strategy at Datawatch Panopticon, says: “Capital markets customers will benefit from Panopticon Streams’ support of several key use cases, including best execution, real-time P&L, transaction cost analysis and trader and trading surveillance.

“The addition of the engine’s capabilities means we now offer a general purpose streaming analytics platform. It has applications anywhere organisations need to identify anomalies and outliers, investigate their causes, back test potential solutions, and then alter their business processes to address the issue. Given the software’s ability to handle real-time and time series data, we believe it will be most useful in electronic trading, telecommunications, energy, and IoT applications.”

The combination of stream processing, rapid data comprehension through visual analysis, faster investigation through time series analysis and playback down to the individual tick, is designed to help organisations make timely, more informed decisions that have immediate financial impact.

Built on the Apache Kafka platform, Panopticon’s solutions enable business users to build sophisticated Kafka data flows with no coding. Users who understand the business problems can create their own data flows, which can use information from a number of sources and incorporate joins, aggregations, conflations, calculations, unions and mergers, and alerts. Analysts can visualise processed data using Panopticon Visual Analytics and deliver it to Kafka, Kx kdb+, InfluxDb, or any SqL database.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

Market Data Distribution Parity: Redefining Fairness

By Scott Schweitzer, Independent Consultant, LDA Technologies. Electronic exchanges play a vital role in the financial industry, providing a robust and trusted forum for trading and execution without issue. But even so, the technology available to exchanges has traditionally led to discrepancies in data distribution, from microseconds to nanoseconds, which can be critical for latency-sensitive...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Best Practice Client Onboarding

Client onboarding is central to the success of banks, yet it continues to present challenges and the benefits of getting it right are difficult to achieve. The challenges arise from siloed systems, manual processes and poor entity data quality. The potential benefits of successful implementation include excellent client experience, improved client acquisition and loyalty, new business opportunities, reductions in costs, competitive advantage, and confidence in compliance.