About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Datactics Accelerates Business Development, Scales Global Presence, Takes AI Platform to the Next Level

Subscribe to our newsletter

Datactics is about to close third round funding of £2 million. The funding comes from the company’s previous investors – Par Equity, The Bank of Ireland Kernel Capital Group Fund, and Clarendon Fund Managers – and will be used to accelerate business development, strengthen the company’s global presence, and take its AI and machine learning (ML) platform for data quality and matching to the next level.

The company has secured five new customers over the past year, despite the coronavirus pandemic, with three in the financial services sector, one in government, and one in insurance – a first for Datactics. In total it has over 100 active installations, of which about 20 are in financial services. CEO Stuart Harvey notes a resurgence of interest in data quality, as well as increased demand for the company’s solutions based on their fit with client problems.

Discussing the additional funding, Harvey says: “The maturity of the Datactics platform, including multiple AI apps, and a strong delivery team of about 60 people, mean we are ready to scale, here in Europe, but also in the US and Asia Pacific.”

The company also plans to scale through technology partnerships that will extend its domain expertise, and system integration partnerships that will take it into new region. Two graduates have also been recruited recently as part of the Northern Ireland Graduate to Export programme, with one exploring market opportunities in Japan and the other supporting clients and helping to grow the business in New York, Covid-19 permitting.

From a technology perspective, Datactics continues to build out its platform and machine learning solutions in response to client needs and under the auspices of head of AI, Fiona Browne. The company’s latest ML additions to the platform are data matching, error detection, dataset labelling and knowledge graph capability. Browne highlights the importance of automated data labelling, often a manual process, to speed up an ML model’s learning, and the platform’s ability to ingest company data and cleanse, dedupe and match it before it is used in a client’s knowledge graph.

Next up, Browne and her team are working on an augmented data quality app that will recommend data quality rules based on underlying datasets, as well as a break analysis app that uses predictive analytics to understand where data is breaking and predict future breaks by learning from previous SME resolutions. Browne says: “These two use cases of the AI engine are geared to create efficiencies and make sure the best information gets to the right people in the least amount of time.”

Datactics use natural language processing (NLP) techniques to develop ML models, and has built in Lime and Shap for model explainability. These tools do similar things in terms of explaining why a model has made a particular decision, but are based on different mathematical approaches. That said, Browne comments: “Machine learning models alone are not sufficient, AI must be explainable.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

4 September 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and...

BLOG

Rise of Data Products Excites Data Management Summit London

Squeezing the most value from data has become the key driver of data management innovation in the past few years. Among the tools garnering most attention in this quest is an approach that treats data as a consumer product. The theory is a simple one. By packaging datasets as well and data-centric services and products,...

EVENT

TradingTech Summit London

Now in its 14th year the TradingTech Summit London brings together the European trading technology capital markets industry and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...