About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Data Management Summit – Emerging Technologies Deliver Business Benefits

Subscribe to our newsletter

Big data, cloud computing, the semantic web, big meta data, logical data models and in-memory analytics featured in a debate about emerging technologies for enterprise architecture at this week’s A-Team Group Data Management Summit.

Colin Gibson, head of data architecture, markets and international banking at the Royal Bank of Scotland set the scene describing data management development work at the bank, before A-Team Group editor-in-chief Andrew Delaney stepped up to moderate a panel discussion including Gibson; Rupert Brown, IB CTO lead architect at UBS Investment Bank; Amir Halfon, chief technologies, financial services at MarkLogic; and Eyal Gutkind, senior manager, enterprise market development at Mellanox Technologies.

Gibson presented under the title Understanding Data – Analysis, Not Archaeology. He highlighted the need to understand data if maximum value is to be extracted from it and described development of a data knowledge base at Royal Bank of Scotland. Avoiding the data inconsistencies of running numerous data silos and the difficulties of spaghetti-style application architecture, Gibson selected a meta data model for the data knowledge base, which was then filled with content. The development was not without challenges, such as mapping legacy data to the logical model and sustaining stamina throughout the build, but the outcome is a data management solution that meets business needs.

Panellists agreed that an enterprise approach to data management is essential in an increasingly regulated market that must report on both structured and unstructured data, manage internal risk and deliver agile solutions to demanding customers. Halfon commented: “If data can be made available without building a data warehouse, it is possible to be more agile and get to trading more quickly. Adding other types of information other than trade data, perhaps political data or news analysis, can deliver better returns.”

It is these types of business benefits that win C-suite buy-in for data management programmes, but the benefits cannot be delivered without technology innovation. Halfon noted an industry move towards logical data warehouses with data schema dictated by consumers rather than domain experts, as well as the emerging power of semantics in systems development. Brown, like Gibson, advocated the use of meta data models and described the criticality of data sequencing in the ‘forensic pathology’ of finding out how something has happened.

In terms of specific technologies, big data got a thumbs up from the US contingent in the conference room and a thumbs down from the Europeans. The panellists agreed that whether or not you like the term and despite having dealt with big data’s three Vs of volume, velocity and variety for many years, its elements still have a part to play in data management.

Gutkind explained: “We see people wanting to do analysis on data as it flies, so velocity is important. It is not just about putting data into a system for analysis, but analysing it as it goes in.” This is the role of in-memory processing, a technology that is gaining ground, but needs to be part of a wider velocity and volume solution that could also encompass solid state local drives and cloud storage.

On variety, Halfon said: “Variety is where the challenge and opportunity lies. If all data can be brought together in a way that has not been done before, it is possible to manage risk and regulation, and deliver revenue and returns.” He cited tools such as Hadoop and MarkLogic’s NoSQL and search capability as a means of managing and benefitting from big data.

Although cloud computing is some years down the development road, the panellists voted in its favour. Gibson acknowledged its elasticity to deal with data spikes, while Brown suggested it can support better data management as the location of data and where it is moving to and from can be tracked. He also proposed clouds including models of system topology and simulations to discover where data is best placed.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

A-Team Group Announces Winners of the AI in Capital Markets Awards 2025

A-Team Group has announced the winners of the inaugural AI in Capital Markets Awards 2025, celebrating the most innovative and impactful applications of artificial intelligence and machine learning across the global financial markets. The new awards programme recognises technologies that have moved beyond proof-of-concept to deliver measurable value, supporting efficiency, resilience, and insight generation across...

EVENT

TradingTech Summit New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

FRTB Special Report

FRTB is one of the most sweeping and transformative pieces of regulation to hit the financial markets in the last two decades. With the deadline confirmed as January 2022, this Special Report provides a detailed insight into exactly what the data requirements are for FRTB in its latest (and final) incarnation, and explores what needs to be done in order to meet these needs on a cost-effective and company-wide basis.