About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Wolters Kluwer Pushes Forward AI Agenda With New Proof of Concept

Subscribe to our newsletter

In the latest step forward in the field of AI-driven regulatory reporting, Wolters Kluwer has completed a successful Proof of Concept (PoC) showing that a machine can learn how to take over any end-to-end regulatory reporting process for financial institutions and regulators, across every jurisdiction, by using historical source data and its corresponding regulatory submissions.

As global regulators impose ever more rigorous reporting obligations on financial institutions, regulatory reporting has become more onerous, with an increased risk of potential error. Emerging regulations require more prescriptive and highly granular data sets, reported in increasing frequencies. Financial institutions are therefore looking to new technologies, such as ML, to relieve these regulatory reporting burdens.

The latest PoC from Wolters Kluwer found that it is possible to build predictive models with high accuracy and flexibility that complement human judgement and oversight, making it likely that production reporting mechanisms will incorporate Machine Learning (ML) in the near future.

The PoC was trained on two separate end-to-end regulatory reporting processes: the Monetary Authority of Singapore’s MAS 610 and APRA’s Economic and Financial Statistics. After just a few minutes of training, a total of 250,000 records of previously unseen raw data (the ‘internal vocabulary’) containing 260 features (input) and 240 corresponding labels (output) were predicted with very high accuracy – in many cases, the corresponding regulatory reporting output was predicted with >99% accuracy.

“If humans are capable of designing processes which ultimately convert the financial institutions’ raw data into structured regulatory submissions, I see no reason why machines can’t learn to do the same. Our PoC shows that machines can indeed learn to take over any end-to-end regulatory reporting process for any financial institution and any regulator in any jurisdiction,” comments Wouter Delbaere, Director of APAC Regulatory Reporting for Wolters Kluwer FRR. “AI has the potential of disrupting today’s regulatory reporting landscape; rather than taking the traditional approach of explicitly creating deterministic logic, financial institutions can instead adopt machine learning to replace any existing regulatory reporting process with significantly reduced time and effort.”

Last year Wolters Kluwer FRR launched a software-as-a-service (SaaS) Regulatory Reporting solution, and also unveiled a major upgrade to its OneSumX Regulatory Engine.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: GenAI and LLM case studies for Surveillance, Screening and Scanning

6 November 2025 11:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes As Generative AI (GenAI) and Large Language Models (LLMs) move from pilot to production, compliance, surveillance, and screening functions are seeing tangible results — and new risks. From trade surveillance to adverse media screening to policy and regulatory scanning, GenAI and...

BLOG

19 RegTech Insights for 2025 from our RegTech Summits

The RegTech Summits in London and New York delivered a deep dive into AI-driven compliance, accelerated settlement, and evolving regulatory frameworks among other key RegTech topics, with industry leaders and regulators weighing in on the biggest challenges ahead. From the implementation of accelerated settlement cycles across global markets to the rise of generative AI (GenAI)...

EVENT

AI in Capital Markets Summit New York

The AI in Capital Markets Summit will explore current and emerging trends in AI, the potential of Generative AI and LLMs and how AI can be applied for efficiencies and business value across a number of use cases, in the front and back office of financial institutions. The agenda will explore the risks and challenges of adopting AI and the foundational technologies and data management capabilities that underpin successful deployment.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...