About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Standard Life Takes Stealthy Approach to Building a Data Warehouse

Subscribe to our newsletter

A stealthy rather than Big Bang approach to data warehousing can meet business requirements in a timely and cost-conscious way, and lay the foundations for a scalable solution, said Jim Shaw, solutions architect at Standard Life, as he presented a case study of data warehouse development at last week’s Financial Information Management (FIMA) Conference in London.

“Enterprise data warehouse projects are typically large, complex, long and expensive. Significant change is required and there needs to be a high degree of senior management buy-in. That is a hard sell,” he said. “So, we reduced the complexity, time and cost, and decided to deliver an enterprise data warehouse in smaller chunks.”

Shaw’s project to build a data warehouse on an incremental basis has to abide by Standard Life rules requiring each project to have its own business case and be developed in collaboration with external partners.

In response to business requirements, Shaw and his team rolled out the first element of the data warehouse for accounting in the third quarter of 2008. This was driven by a business requirement to view accounting data across all source systems, maintain consistent data formats and provide access to data that had not previously been available to the accounting function.

A second element of the data warehouse, forward pricing, which reduced risk and allowed the movement of funds between insurance administration and investment systems, was rolled out in the fourth quarter of 2009, followed by policy assets, a core enabler of profit generation, in the fourth quarter of 2011. The next tranche of the build will support Solvency II. It will go live in 2013, delivering required balance sheets and optimising the company’s regulatory capital position.

Standard Life predefined the architecture for the data warehouse using Kimball methodology, part of its overall strategy. It then employed an Oracle database, Ab Initio extract, transfer and load tools, and Cognos business intelligence tools for data presentation to deliver the database solutions, basing what it could on reusable components such as data models and frameworks.

“The benefits of an incremental approach are productivity, data consistency and a scalable solution, but it is important to stick to strong architectural governance,” said Shaw. “The IT team worked with the business and we could support current business priorities, align with the business and structure for growth. Going forward, we will give the business control using business rules, not code, and the business will lead the extension of the enterprise data warehouse with new business processes, attributes and propositions.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

Implementing and Understanding Modern Data Architectures: Webinar Preview

The evolution of data use by financial institutions has been accompanied by ever-changing challenges to its management. With technologies such as artificial intelligence enabling firms to prise greater value from their data and to subject it to greater utilisation, a new set of data management practices have emerged. These modern data architectures regard data as...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...