About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks IBM’s Hadoop

Subscribe to our newsletter

STAC – aka the Securities Technology Analysis Center – has benchmarked IBM’s proprietary Platform Symphony implementation of Hadoop MapReduce, versus the standard open source offering, to compare their respective performance. On average, IBM’s implementation performed jobs 7.3 times faster than the standard, reducing total processing time by a factor of six.

Better known for its benchmarking of low-latency trading platforms, STAC leveraged the Statistical Workload Injector for MapReduce (SWIM), developed by the University of California at Berkeley. SWIM provides a large set of diverse MapReduce jobs based on production Hadoop traces obtained from Facebook, along with information to enable characterisation of each job. STAC says it undertook the benchmarking because many financial markets firms are deploying Hadoop.

The hardware environment for the testbed consisted of 17 IBM compute servers and one master server communicating over gigabit Ethernet. STAC compared Hadoop version 1.0.1 to Symphony version 5.2. Both systems ran Red Hat Linux and used largely default configurations.

IBM attributes the superior performance of its offering in part to its scheduling speed. IBM’s Hadoop is API-compatible with the open source offering but runs on the Symphony grid middleware that became IBM’s with its aquisition of Platform Computing, which closed in January of this year.

For more information on STAC’s IBM Hadoop benchmark, see here.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline and modernise the trader desktop are gaining a tangible edge – both in speed...

BLOG

AI Personalization in Trading: Where We Are and Where We’re Heading

Ivan Kunyankin, Data Science Team Lead at Devexperts. AI may have started out its brokerage career in back-office, enhancing operational efficiency by providing human teams with actionable client insights, but it’s now being promoted to more sensitive client-facing roles. As AI tools continue to evolve and become normalized in more areas of daily life, financial...

EVENT

RegTech Summit New York

Now in its 9th year, the RegTech Summit in New York will bring together the RegTech ecosystem to explore how the North American capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

The Trading Regulations Handbook

Need to know all the essentials about the regulations impacting trading infrastructure? Welcome to the first edition of our A-Team Trading Regulations Handbook which provides all the essentials about regulations impacting trading operations, data and technology. A-Team’s Trading Regulations Handbook is a great way to see at-a-glance: All the regulations that are impacting trading technology...