About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks IBM’s Hadoop

Subscribe to our newsletter

STAC – aka the Securities Technology Analysis Center – has benchmarked IBM’s proprietary Platform Symphony implementation of Hadoop MapReduce, versus the standard open source offering, to compare their respective performance. On average, IBM’s implementation performed jobs 7.3 times faster than the standard, reducing total processing time by a factor of six.

Better known for its benchmarking of low-latency trading platforms, STAC leveraged the Statistical Workload Injector for MapReduce (SWIM), developed by the University of California at Berkeley. SWIM provides a large set of diverse MapReduce jobs based on production Hadoop traces obtained from Facebook, along with information to enable characterisation of each job. STAC says it undertook the benchmarking because many financial markets firms are deploying Hadoop.

The hardware environment for the testbed consisted of 17 IBM compute servers and one master server communicating over gigabit Ethernet. STAC compared Hadoop version 1.0.1 to Symphony version 5.2. Both systems ran Red Hat Linux and used largely default configurations.

IBM attributes the superior performance of its offering in part to its scheduling speed. IBM’s Hadoop is API-compatible with the open source offering but runs on the Symphony grid middleware that became IBM’s with its aquisition of Platform Computing, which closed in January of this year.

For more information on STAC’s IBM Hadoop benchmark, see here.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Data platform modernisation: Best practice approaches for unifying data, real time data and automated processing

Date: 17 March 2026 Time: 10:00am ET / 3:00pm London / 4:00pm CET Duration: 50 minutes Financial institutions are evolving their data platform modernisation programmes, moving beyond data-for-cloud capabilities and increasingly towards artificial intelligence-readiness. This has shifted the data management focus in the direction of data unification, real-time delivery and automated governance. The drivers of...

BLOG

The AI Co-Pilot: How Wall Street is Really Using AI for a Competitive Edge

The headlines paint a dramatic picture: autonomous AI traders making split-second decisions, rendering human portfolio managers obsolete. But for technology professionals on the ground, the reality of artificial intelligence in capital markets is proving to be both more pragmatic and, in many ways, more powerful. Discussions at A-Team Group’s recent TradingTech Briefing New York revealed...

EVENT

Buy AND Build: The Future of Capital Markets Technology

Buy AND Build: The Future of Capital Markets Technology London examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

High Performance Technologies for Trading

The highly specialised realm of high frequency trading without doubt is a great driver for a range of high performance technologies that are becoming essential tools for Wall Street. More so than the now somewhat pedestrian algorithmic trading and analytics/pricing applications that are usually cited as the reason that HPC is hitting the financial markets,...