The leading knowledge platform for the financial technology industry
The leading knowledge platform for the financial technology industry

A-Team Insight Blogs

Shape Releases AI-based Data Monitoring Solution for Data Management and Data Science

Shape, a Brussels-based start-up, has released a data monitoring solution for data management and data science that is built on machine learning and artificial intelligence (AI) technologies and designed to ensure data is trusted and fit for purpose.

When used as a data management tool, Shape.AI allows data science and analytics teams to define their data quality expectations in a self-service way and monitor the expectations. When issues arise, teams are alerted and can identify the root-cause of problems and decide on resolution.

From a data science perspective, Shape.AI allows data scientists to define and monitor data quality expectations as they build data models using both internal and vendor data sources and move them into production.

Maarten Masschelein, co-founder and CEO at Shape, says: “As firms rely more on data every day, it is key that they can trust the data. There are a variety of components of trust, one is the need for data to be fit for purpose as data products are developed and put into production. We focus on DataOps around data products and operations. To do this, we are evolving a data quality monitoring platform that goes beyond legacy data quality tools built around ETL and data warehouses.”

The platform uses machine learning and AI to check production data consistently against expectations and identify any anomalies that should be investigated. It is cloud native and is implemented to allow self-service, rules-based testing based on a library of tests developed by the company in collaboration with industry experts.

The company is working with a large asset manager in the Netherlands, which helped to co-design the software, to use a rules-based approach to make sure all statics funds data is of high quality before it is exported to customers and internal and external reports. Further work will dive into other datasets to check data quality, bring any anomalies to attention immediately, and hopefully before they break anything, and build trust in data.

As the company heads towards its first birthday on April 27, 2019 with a staff of five and the benefit of a €500,000 government grant received in February, Masschelein notes good progress with the asset management firm up and running with Shape.AI and proofs of concept about to take place in the US, Germany and London. In other sectors, the company is working with HBO and Expedia.

Related content

WEBINAR

Recorded Webinar: Adverse media screening – how to cut exposure to criminal activity, from money laundering to human trafficking

Screening for adverse media coverage of counterparties presents an incredible opportunity for financial institutions to limit risk exposures and identify bad actors early. It is required by regulations such as the EU’s sixth Anti-Money Laundering Directive (AML 6), and is one of the most effective ways to steer clear of potential connections with sanctioned activity...

BLOG

ICE Expands ESG Reference Data Service to Include Companies In Key US Indices

Intercontinental Exchange (ICE) has expanded the content on its environmental, social and governance (ESG) reference data platform to include high quality, granular data that can be used to make actionable comparisons across companies and sectors. The expansion includes coverage of companies in key indices, including the ICE U.S. 1000 Index, which measures the performance of...

EVENT

Data Management Summit Europe Virtual

The Data Management Summit Europe Virtual brings together the European data management community to explore the latest challenges, opportunities and data innovations facing sell side and buy side financial institutions.

GUIDE

Entity Data Management Handbook – Seventh Edition

Sourcing entity data and ensuring efficient and effective entity data management is a challenge for many financial institutions as volumes of data rise, more regulations require entity data in reporting, and the fight again financial crime is escalated by bad actors using increasingly sophisticated techniques to attack processes and systems. That said, based on best...