A-Team Insight Blogs

Refinitiv Outlines Development of Machine Learning and Data Science

Machine learning and artificial intelligence (AI) are finding key use cases in risk management, performance analysis and trade idea generation, suggesting the technologies have moved beyond the experimental stage to become core components of business strategy and investment. Development is being driven by growing numbers of data scientists employed by financial organisations.

The barriers to adoption and implementation, as in so many cases, include poor data quality and availability, incomplete records, lack of capacity to manage the size and frequency of data, and cleaning and normalising the data. A lack of funding can also stymie adoption. Further difficulties include a mismatch between the boardroom and data scientists, with C-level professionals believing it is important to be seen using the latest tools for competitive advantage, and data scientists under pressure to deliver on the promise of machine learning while facing organisational constraints at ground level.

These are some of the headlines from research into AI and machine learning by Refinitiv that was published this week in the first of a series of annual reports on technology innovation, and led the company to suggest that AI will be the single greatest enabler of competitive advantage in the financial services sector.

Considering some of the key results of the research, Amanda West, head of innovation enablement in Refinitiv’s applied innovation team, comments: “The importance of getting to grips with data quality and helping solve this for customers is not surprising. What we hadn’t anticipated was the rate and level of operational adoption of machine learning shown by the research, and a primary use case of risk management rather than expected cost take out.”

Other results from the research show the buy-side leading the sell-side in making machine learning part of business strategy, alternative data and unstructured data becoming significant subjects of machine learning alongside market and internal company data, and data scientists being predominantly consolidated into a few teams rather than being distributed across a number of teams.

From a geographic perspective, financial services professionals in North America are more advanced than those in Europe and Asia as a result of the largest financial services organisations being headquartered in the region, initial innovation coming largely from local universities, and the financial market being more homogeneous than in the rest of the world. That said, Refinitiv suggests these reasons behind North American leadership are eroding.

The research for the Refinitiv report was carried out by Coleman Research in December 2018 and included 447 telephone interviews with data science practitioners and C-level data science decision makers in financial institutions with annual revenue of more than $1 billion.

The survey was global and included only participants from organisations that were using machine learning (98% of participants) or intending to do so in future (2%).

Leave a comment

Your email address will not be published. Required fields are marked *

*

Share article

Related content

WEBINAR

Recorded Webinar: How are you managing the need to demonstrate trade reconstruction?

Don’t miss this opportunity to view the recording of this recently held webinar. Best execution under MiFID II and other current regulations presents practitioners with a daunting challenge: How does my firm provide evidence that it acted in the best interests of the client? The response necessarily requires storage of vast quantities of data from...

BLOG

Digital Reasoning, Tableau, Cloudera Focus Unstructured Data Analytics on Financial Markets

Partnering with Tableau Software for data visualisation, and leveraging Cloudera’s Hadoop distribution for storage, Digitial Reasoning is applying its Synthesys unstructured data analytics platform at financial markets applications. Synthesys takes structured and unstructured text as input and then uses named entity recognition, understanding of time and geographic references, combined with patented relationship analysis, to develop...

EVENT

TradingTech Summit New York City

Our TradingTech Summit in New York City is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

Entity Data Management Handbook – Fourth Edition

Welcome to the fourth edition of A-Team Group’s Entity Data Management Handbook sponsored by entity data specialist Bureau van Dijk, a Moody’s Analytics company. As entity data takes a central role in business strategies dedicated to making the customer experience markedly better, this handbook delves into the detail of everything you need to do to...