The leading knowledge platform for the financial technology industry
The leading knowledge platform for the financial technology industry

A-Team Insight Podcasts

The Next Wave for Trading Infrastructure Analytics

How are analytics applied to electronic trading infrastructure? What is so important about time accuracy? And how can you gain complete visibility into all the transaction processes with a view to answering questions from the business? Corvil CEO Donal Byrne addresses these questions and more, in a wide-ranging discussion on the potential for trading analytics going forward.

Over the past five or six years, electronic trading infrastructure has been all about providing transparency – understanding exactly what is going on and why. An initial focus on latency – measuring speed – developed into an exploration of how to accurately measure time, and the importance of visibility throughout every step of the order transaction. This is referred to as machine time – being able to track events on the timescale that machines make decisions. According to Byrne, the first wave of analytics was about trying to achieve this picture – accurately portraying the transaction lifecycle at every stage in order to be able to explain what happened and why. “It is about joining the dots between what the business is asking, versus what the infrastructure is doing,” he explains in the podcast.

The next wave, however, is more forward-looking – and according to Byrne, is all about the application of machine learning to machine time data. Specifically, identifying what type of problems machine learning, AI and cognitive computing are appropriate to solve, and what aspects of these technologies are useful in doing so.

He offers three examples of work that Corvil has ben doing to explore this area: including how to use machine learning to get a better understanding of order outcome (and using that learning to optimize the outcome of orders); how machine learning can be applied to MiFID II compliance prediction (for example, in terms of developing an algorithm to predict the final end-of-day order to trade ratio); and finally the exciting new possibility of industry benchmarking of infrastructure analytics – including an estimate of cost-to-lead.

“We all know about transaction cost analysis, but we think that the next wave is going to focus on transaction quality analysis,” predicts Byrne. “The aspects of optimization, forensics, benchmarking and compliance are going to be at the forefront.”

To find out more about the possible applications of machine learning and other new developments that are driving the future of electronic trading infrastructure analytics, listen to our podcast.

Related content

WEBINAR

Recorded Webinar: Managing the transaction reporting landscape post Brexit: MiFID II, SFTR, EMIR

The transaction reporting landscape has, for many financial institutions, expanded considerably in size since the end of the UK’s Brexit transition period on 31 December 2020 and the resulting need for double reporting of some transactions to both EU and UK authorities. It has also changed dramatically following the UK government’s failure to reach equivalence...

BLOG

SteelEye Teams with txtsmarter for Messaging Data Capture

Financial compliance and analytics specialist SteelEye is adding txtsmarter’s messaging capture and archiving capability to its communications surveillance solution, giving clients access to native messaging data sourced from Android SMS/MMS, WhatsApp and – uniquely – Apple iMessage, in real time. The combined solution adds mobile phone messages to the range of electronic communications that users...

EVENT

Data Management Summit Virtual

The Data Management Summit Virtual will bring together the global data management community to share lessons learned, best practice guidance and latest innovations to emerge from the recent crisis. Join us online to hear from leading data practitioners and innovators from the UK, US and Europe who will share insights into how they are pushing the boundaries with data to deliver value with flexible but resilient data driven strategies.

GUIDE

Regulatory Data Handbook 2020/2021 – Eighth Edition

This eighth edition of A-Team Group’s Regulatory Data Handbook is a ‘must-have’ for capital markets participants during this period of unprecedented change. Available free of charge, it profiles every regulation that impacts capital markets data management practices giving you: A detailed overview of each regulation with key dates, data and data management implications, links to...