About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

NovaSparks Adds Data Feeds; Outlines FPGA Matrix Architecture; Details Performance

Subscribe to our newsletter

NovaSparks has added support for an additional five data feeds to its Gen2 appliance, while at the same time outlining the FPGA matrix architecture that the appliance implements in order to handle multiple feeds and application functionality, and detailing its latency profile.

The new data feed support comprises feeds from Bats (BYX and BZX), Direct Edge (NG-A and NG-X), NYSE Arca, the London Stock Exchange (Level 2) and Turquoise (Level 2). Support for Nasdaq, CME and Eurex was already available. NovaSparks says the choice of the added data feeds was driven by customers, though it is currently focusing on providing support for equities and futures exchanges in Europe and North America.

Gen2 is a 2U rackable appliance based on FPGAs from Altera – up to three per appliance. Multiple appliances can be inter-connected to scale up the matrix to support multiple data feeds and trading functions.

The company has released data detailing the latency profile of its matrix architecture. “Our FPGA Market Data Matrix Feed Handlers process the cash equity feeds in less than 700 nanoseconds even during micro bursts and message volumes peaks,” says NovaSparks CEO Yves Charles.

The chart below details the latency observed when a full day of ITCH message data – some 280 million packets – is replayed in just eight minutes.

 

NovaSparks attributes the consistency of latency under load to the matrix architecture’s  implementation of a full set of functions in multiple FPGAs, as opposed to other approaches where FPGAs are used simply for basic acceleration, such as network protocol handling and data transformation, while most of the processing is performed on a traditional CPU.

In the NovaSparks architecture, FPGAs are used for UDP, IP and network handling, message parsing, symbol filtering, book building and fan out to downstream applications. Yves says that the company will this month roll out a proof of concept implementation running trading algorithms on FPGAs within the matrix.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

TP ICAP Acquires Neptune Networks to Build Integrated Electronic Bond Trading and Data Business

TP ICAP Group plc has acquired Neptune Networks, a provider of real-time pre-trade bond market data, as part of its strategy to expand its presence in the electronic credit trading space. Neptune was previously owned by a consortium of leading investment banks. The acquisition will bring together Neptune’s established data platform and Liquidnet’s electronic credit...

EVENT

TradingTech Summit New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

Dealing with Reality – How to Ensure Data Quality in the Changing Entity Identifier Landscape

“The Global LEI will be a marathon, not a sprint” is a phrase heard more than once during our series of Hot Topic webinars that’s charted the emergence of a standard identifier for entity data. Doubtless, it will be heard again. But if we’re not exactly sprinting, we are moving pretty swiftly. Every time I...