About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

NovaSparks Adds Data Feeds; Outlines FPGA Matrix Architecture; Details Performance

Subscribe to our newsletter

NovaSparks has added support for an additional five data feeds to its Gen2 appliance, while at the same time outlining the FPGA matrix architecture that the appliance implements in order to handle multiple feeds and application functionality, and detailing its latency profile.

The new data feed support comprises feeds from Bats (BYX and BZX), Direct Edge (NG-A and NG-X), NYSE Arca, the London Stock Exchange (Level 2) and Turquoise (Level 2). Support for Nasdaq, CME and Eurex was already available. NovaSparks says the choice of the added data feeds was driven by customers, though it is currently focusing on providing support for equities and futures exchanges in Europe and North America.

Gen2 is a 2U rackable appliance based on FPGAs from Altera – up to three per appliance. Multiple appliances can be inter-connected to scale up the matrix to support multiple data feeds and trading functions.

The company has released data detailing the latency profile of its matrix architecture. “Our FPGA Market Data Matrix Feed Handlers process the cash equity feeds in less than 700 nanoseconds even during micro bursts and message volumes peaks,” says NovaSparks CEO Yves Charles.

The chart below details the latency observed when a full day of ITCH message data – some 280 million packets – is replayed in just eight minutes.

 

NovaSparks attributes the consistency of latency under load to the matrix architecture’s  implementation of a full set of functions in multiple FPGAs, as opposed to other approaches where FPGAs are used simply for basic acceleration, such as network protocol handling and data transformation, while most of the processing is performed on a traditional CPU.

In the NovaSparks architecture, FPGAs are used for UDP, IP and network handling, message parsing, symbol filtering, book building and fan out to downstream applications. Yves says that the company will this month roll out a proof of concept implementation running trading algorithms on FPGAs within the matrix.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline and modernise the trader desktop are gaining a tangible edge – both in speed...

BLOG

Watching the Future: The Top 10 Surveillance and Compliance Challenges in Prediction Markets

By Joe Schifano, Global Head of Regulatory Affairs, Eventus. Prediction markets are quickly becoming the next frontier of finance – a new class of markets where people trade on what they believe will happen next. From election results to interest rate fluctuations, these platforms turn collective judgment into tradable data. But as prediction markets move...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Enterprise Data Management, 2010 Edition

The global regulatory community has become increasingly aware of the data management challenge within financial institutions, as it struggles with its own challenge of better tracking systemic risk across financial markets. The US regulator in particular is seemingly keen to kick off a standardisation process and also wants the regulatory community to begin collecting additional...