The leading knowledge platform for the financial technology industry
The leading knowledge platform for the financial technology industry

A-Team Insight Blogs

Managing Data to Deliver Quality, Meaningful Analytics and Business Benefits

Subscribe to our newsletter

Data quality is critical to meaningful data analytics, and data analytics are key to business strategy – but with increased volumes and complexity of data coming into organisations, how can they ensure data is of the required quality and analytics are adding value to the business?

A panel at A-Team Group’s recent Data Management Summit in the City of London on March 21, 2019 addressed these imperatives, exploring key themes in the drive to develop data processes that unite to deliver business benefits.

The session was moderated by Garry Manser, senior manager of master and reference data and data quality at BT. Panellists included Mark Wilson, head of data governance at Handelsbanken; Leyre Murillo Villar, CDO and data control lead at BNP Paribas; and Peter Moss, CEO of the SmartStream Reference Data Utility (RDU).

Discussion points included how to use data dictionaries and business glossaries to achieve consistency and help business units understand different types of data, the best way of creating feedback loops between data management and the business, and whether DataOps could help or hinder data management processes.

One panellist highlighted the dichotomy between ‘data’ and ‘use of data’, saying: “Analytics is like a viewer that shows users what is happening. If you want real impact, then you need to know what you are going to do with the results. Why do you want to do data analytics at all? How will it add value to your business?”

One concern is that there is simply too much data, and this has the potential to impact quality, which in turn will impact the results of analytics. Without quality standards, data can be less than useful, no matter how much of it you have. To resolve this problem, the first step must be for business and IT functions to work together to ensure clean data that is fit for purpose. This is where feedback loops can be helpful. Does your business understand the data issues? How do you communicate and prioritise problems? Who is the owner of the data? Who will fix it if there are errors? Who will develop indicators and monitor data quality dashboards? All these questions must be answered before an effective data analytics strategy can be put in place.

For example, data is often captured in silos by systems built to serve specific purposes and which were never intended to be used more broadly. With a view of data as a strategic asset, these systems must be joined together to unlock their value, and that poses a further challenge. “Data management has to be embedded within the organisation,” said a speaker. “There is no point if all your capabilities sit with consultants outside the enterprise.”

“Agility is also important,” noted another panellist. “You cannot wait until your data is perfect to start data analytics. You have to be able to demonstrate the business need and the business benefits of investment in good tools and technology.”

The business need includes ensuring data accuracy through real-time monitoring and creating daily processes that are implemented across the organisation. “If data is being used, mistakes are less likely,” explained a panellist. “Quality checks should be based on the tangible use of data. You first have to define what is ‘right’ and then automate as much as possible. This is the only way to deal with the current volume of data.”

Summing up, the panel offered some tips for data practitioners seeking to upgrade data management processes and run effective analytics to deliver business benefits:

  1. Assess the maturity of your organisation – where are you in terms of data management, and where do you want to be?
  2. Turn things upside down – identify your key business problem first, then work backwards from the analytics outcome you want and the processes you need to get there.
  3. Start small – you won’t get 100% of your data correct first time, so identify key priorities and business needs, and implement the changes that will make the biggest impact.

Communicate – update your systems to ensure you speak the same language across the enterprise and ensure you bridge the gap between business and IT functions.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Deploying knowledge graphs in the real data management world

Knowledge graphs that link data across a wide and diverse range of sources, incorporate both structured and unstructured data, visualise connected data, and provide in-depth contextual search capabilities that deliver business insight without moving data offer great potential for financial institutions. Their use cases range from advanced data integration, unification and analytics to specific functionality...

BLOG

Martin Currie Investment Management Implements CuriumEDM for ESG Data Processes

Martin Currie Investment Management has completed the first phase of implementing Curium Data Systems’ CuriumEDM, which includes a focus on gathering, mastering and quality control of Environmental, Social and Governance (ESG) data sets. The investment manager has offered sustainable long-term investing for some years, with ESG analysis embedded in its investment process. CuriumEDM provides data...

EVENT

TradingTech Insight Briefing New York

TradingTech Insight Briefing NYC will explore how trading firms are innovating and leveraging technology as a differentiator in today’s cloud and digital based environment.

GUIDE

ESG Handbook 2021

A-Team Group’s ESG Handbook 2021 is a ‘must read’ for all capital markets participants, data vendors and solutions providers involved in Environmental, Social and Governance (ESG) investing and product development. It includes extensive coverage of all elements of ESG, from an initial definition and why ESG is important, to existing and emerging regulations, data challenges...