About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Kingland White Paper and Webinar Discuss How to Improve Entity Data Quality

Subscribe to our newsletter

Reliable entity data is critical to business strategy, but it can be difficult to manage, raising questions about how financial institutions can improve the measurement of entity data quality and manage it in a way that best suits their organisation. Answering the questions are emerging cognitive technologies that can identify and automatically fix incorrect entity records, and an entity data quality management process that assesses, remediates, enriches and maintains the data.

There are many critical use cases for entity data, including business decisions, trading, risk, settlement and reporting. From a regulatory standpoint, entity data, hierarchy data and beneficial ownership are also essential to anti-money laundering, Know Your Client (KYC) and client onboarding processes, but getting the data right can be challenging and errors can easily permeate through an organisation.

Entity data quality challenges that crop up time and time again include sourcing required data, data duplication and inconsistency, managing data across multiple legacy systems, and coping with a melange of internal and third-party entity identifiers, including Legal Entity Identifiers.

On the basis that if you can’t measure it you can’t manage it, Kingland Systems has developed advanced analytics and cognitive tools that support entity data quality measurement and management, and allow data quality weaknesses to be discovered and fixed quickly and efficiently.

The company outlines how analytics on top of your data can analyse, visualise, explore, report and make accurate predications about entity data associated with your customers and counterparties, and how cognitive data process automation can vastly improve the efficiency of searching, identifying, extracting and fixing entity data in a White Paper titled Entity Data Quality: New Approaches and the Four Categories of Data Quality Management.

You can also find out more about how to measure and manage entity data quality in an upcoming webinar featuring Tony Brownlee, a partner at Kingland; John Yelle, executive director of enterprise data management at DTCC; and a data practitioner working with entity data.

You can sign up for the webinar here and join the discussion on:

  • The criticality of entity data
  • Challenges to entity data quality
  • Application of analytics and cognitive tools
  • How to measure and manage data quality
  • Beneficial outcomes of high quality data
Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

Data’s Role in AI Transition and Value Creation: Data Management Summit London Preview

The rapid adoption of artificial intelligence by financial institutions has required a heavy data management uplift as organisations have upgraded their systems to incorporate the new technology. It has also provided greater opportunity to squeeze even more value from data by enabling its efficient deployment across enterprises. Just how companies manage data for AI to...

EVENT

TradingTech Briefing New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...