About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Make the Most of Migrating Big Data and Analytics to Cloud

Subscribe to our newsletter

Migrating big data and analytics workflows to the cloud promises significant cost savings through efficient use of infrastructure resources and software that scales dynamically based on data volume, query load, or both. These are valuable gains for investment banks, but they can only be fully realised by taking a new approach to architecture and software engineering.

Next week’s Data Management Insight webinar will discuss the challenges of migrating to cloud and explain best practice approaches to making the most of moving big data and analytics to cloud. Webinar speakers include Peter Williams, head of partner technology, Global Financial Services, AWS; Ian Lester, vice president, senior principal developer, AI Labs, Nomura; and Daniel Seal, senior vice president, streaming analytics, KX.

Previewing the webinar discussion, Seal says: “To achieve a truly dynamic cloud environment that can scale limitlessly, banks need to transition from legacy architectures to software and databases that natively support horizontal distribution at geographic scale. Microservices architectures are key to this.”

As well as considering how to develop a microservices architecture, the webinar will discuss how to achieve faster delivery by changing your Software Development Lifecycle (SDLC) to support Continuous Integration/Continuous Deployment (CI/CD), and review the benefits you can expect to gain from a successful big data and analytics migration.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

Data Quality Posing Obstacles to AI Adoption and Other Processes, say Reports

The rush to build artificial intelligence applications has hit a wall of poor quality data and data complexity that’s hindering them from taking advantage of the technology. Those barriers are also preventing firms from upgrading other parts of their tech stacks. A slew of surveys and comments by researchers and vendors paint a picture of...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...