A-Team Insight Blogs

Share article

In early August, FactSet and DataRobot introduced an artificial intelligence (AI) investment workflow, DataRobot on FactSet, an automated machine learning (ML) tool that helps financial services firms – particularly those lacking significant data science teams – incorporate AI into their investment workflows.

At the moment there is a shortage of data scientists within the investment management industry – in particular, those who know how to code in Python –at a time when demand for this skill set is continuing to grow. For. example, for certain portfolio modelling or risk analysis approaches, investment management teams need to have in place automated data collection that will update their algorithms.

According to FactSet, the DataRobot on FactSet solution integrates machine learning technology from DataRobot into the FactSet platform, enabling clients to build, deploy, monitor, and manage sophisticated machine learning models quickly and easily. Investment managers without specific data science knowledge can use the tool to create AI applications for areas such as equity volatility, bond performance, and macroeconomic event predictions.

FactSet says the tool provides the guardrails required for investment managers without data science expertise to build and deploy advanced machine learning. For firms that already have existing data science teams, DataRobot on FactSet can increasing the speed and scale of their financial models, the company says.

“Clients are looking for more effective data and AI tools that will help them surface new investment insights faster and with greater efficiency,” said Rob Robie, executive vice president, analytics, at FactSet. “We are excited to be working with DataRobot to provide an elegant and intuitive solution that allows users to develop and execute successful machine learning strategies.” FactSet had already been using DataRobot tools internally for its own needs for several years.

“There is an unprecedented opportunity for investment professionals to capitalise on their data, and now is the time to adopt robust AI and machine learning capabilities,” said Rob Hegarty, general manager of financial markets and fintech, DataRobot. “We’re excited to work with FactSet on this dynamic integration which will help more organisations make data-driven decisions and realise the true value of AI.”

Leave a comment

Your email address will not be published. Required fields are marked *

*

Related content

WEBINAR

Recorded Webinar: How to exploit the opportunities of alternative data

Alternative data is emerging as a key component of buy-side firms’ efforts to seek out new investment opportunities, for many filling the gap left by the unbundling of sell-side research from execution. By tapping into unique, non-traditional data sets, hedge funds and quantitative fund managers hope to exploit unfound opportunities before they hit the mainstream....

BLOG

Datactics Funnels Funding into AI technology, Staff Hires and International Expansion

Datactics is planning technology, staff and international expansion following the conclusion of a £1.2 million funding round led by The Bank of Ireland Kernel Capital Group Fund and new investor Edinburgh-based Par Equity. Investments in technology and people include an extension of Datactics’ data quality solutions platform and set up of a dedicated artificial intelligence...

EVENT

TradingTech Summit New York City

The TradingTech Summit is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and explores progress trading firms are making towards digital transformation initiatives and how they are using high performance technologies to gain an edge in the current regulatory environment.

GUIDE

High Performance Technologies for Trading

The highly specialised realm of high frequency trading without doubt is a great driver for a range of high performance technologies that are becoming essential tools for Wall Street. More so than the now somewhat pedestrian algorithmic trading and analytics/pricing applications that are usually cited as the reason that HPC is hitting the financial markets,...