The leading knowledge platform for the financial technology industry
The leading knowledge platform for the financial technology industry

A-Team Insight Blogs

Data Virtuality Breaks Data Management Mould with Logical Data Warehouse

Data Virtuality has broken the traditional data management mould with Logical Data Warehouse (LDW), a solution that combines the flexibility of a data virtualisation engine with extract, transfer and load (ETL) tools. It includes 200 connectors to data sources and consumption tools, allows users to access data in real time, and uses SQL language to define data models and access data directly from different systems for use cases such as regulatory reporting.

The company was founded in March 2012 with an initial focus on digital use cases of LDW such as e-commerce and digital marketing. More recently, it has gained interest from the finance sector and is reconsidering its positioning to work specifically within the sector. Clients already onboard include Vontobel and Crédit Agricole Consumer Finance, which uses the platform to aggregate credit risk data, produce regulatory reports, and monitor credit loan applications in real time.

Nick Golovin, founder and CEO of Data Virtuality, explains: “The biggest problems banks face are the challenges of regulation, regulators looking at how they produce reports, and cost. The features of our system fit well here and fulfil use cases such as risk data aggregation, regulatory reporting, digital banking, and real-time processing.”

The Data Virtuality solution provides a single platform to connect, transform, query and join data from multiple data sources immediately, without depending on IT. It can be used across a business, implemented in a day, and its flexibility and scalability allow new queries to be set up in minutes rather than months. The technology is also transparent, making data lineage and an audit trail relatively easy to achieve. Data governance is built into the access layer.

From a user perspective, the solution’s virtualisation engine takes data from any connected source, makes the data look like an SQL database and allows the user to use SQL to define data models and get data directly from different systems to meet particular use cases. Golovin comments: “The virtual layer makes modelling very flexible, the same data is used for different models and output requirements.”

Related content

WEBINAR

Recorded Webinar: A new way of collaborating with data

Digital transformation in the financial services sector has raised many questions around data, including the cost and volume of reference data required by each financial institution. Firms want to pick and choose the reference data they need to fulfil their requirements. Emerging solutions with the potential to decrease the cost of data and increase flexibility...

BLOG

How to Use Chatbots and Collaboration Tools to Improve Automation and Deliver On-Demand Data

Digital transformation in the financial services sector is forcing a rethink in how financial institutions access the data they need to support trading and investment activities. While traditional bulk data distribution arrangements are well suited to large sell-side institutions, they can be costly and lack flexibility for firms from large Tier 2 sell-sides down to the...

EVENT

Data Management Summit USA Virtual

Now in its 11th year, the Data Management Summit USA Virtual explores the shift to the new world where data is redefining the operating model and firms are seeking to unlock value via data transformation projects for enterprise gain and competitive edge.

GUIDE

Entity Data Management Handbook – Seventh Edition

Sourcing entity data and ensuring efficient and effective entity data management is a challenge for many financial institutions as volumes of data rise, more regulations require entity data in reporting, and the fight again financial crime is escalated by bad actors using increasingly sophisticated techniques to attack processes and systems. That said, based on best...