The leading knowledge platform for the financial technology industry
The leading knowledge platform for the financial technology industry

A-Team Insight Blogs

Data Management Summit Workshop: EDMworks Maps a Route to Successful Data Governance

Data governance is essential to managing not only regulatory requirements, but also client lifecycles, product innovation and cost and risk reduction programmes. While this is increasingly the case, developing data governance policies and processes that deliver tangible outcomes can be difficult. Dennis Slattery, CEO of EDMworks, set out the requirements for successful data governance – including collaboration, data ownership and senior management buy in – at last week’s A-Team Data Management Summit in London.

Slattery noted particular need for data governance to support regulatory compliance and good customer experience, but said this can only be achieved through changes to company culture, a shift from process driven data models to data ownership schemes, and the simplification of bank’s business models that, in the case of large banks, can include tens of thousands of systems.

He explained: “Large banks need to make cultural changes. To start, they need to ensure people put good information into front-end systems. Then they need to consider the pressure on people to satisfy regulations, improve client offerings and replace legacy systems with simpler systems. All these areas have interrelated datasets that must be managed, so the need is to set target states for the data environment and initiate change programmes while running the business as usual. A clear vision of data architecture is useful and must be communicated to everyone as success comes down to a culture that fosters collaboration on data and encourages people to work to a plan. Ultimately, this will deliver one view of each customer.”

Typically, an organisation will create a group policy on data governance that provides a framework in which particular aspects of the business can be prioritised, perhaps the customer experience, regulatory compliance or need for greater efficiency. Using a principles based approach to governance it is then possible to step through understanding data, not just entity data but also the data around it; data design, which will provide a vision of data architecture; and data integration, which will join up data sets, help to make data consistent and reduce numbers of legacy systems.

Data processes can then be brought into the governed environment and assessed using tools such as the Enterprise Data Management Council’s Data Management Capability Assessment Model. Sentiment based assessment is also important as people have different perspectives on processes. Assessments of data lineage and profiling can also be made and the analysis of data quality, a key element of data governance including data accuracy, completeness and timeliness, can begin.

With a clear understanding of the current state of processes and data, it is then possible to map information about the processes and gradually build up commonality of data. These steps generate an understanding of who has an interest in particular data and lead to the allocation of data ownership. Slattery explained: “Data ownership needs senior level commitment and oversight. It needs to include accountability for data in each link of an end-to-end process, data within business units and data across a bank.”

Considering the end game of data governance with tangible outcomes, Slattery concluded: “Once a data governance framework is in place, it is essential to communicate this to everyone across the bank and train everyone who will be part of the governance process. Successful data governance will make data owners proud and improve the business, but if it doesn’t work out, the dinosaur problem will appear and new companies will move into the market.”

Related content

WEBINAR

Upcoming Webinar: Deploying knowledge graphs in the real data management world

Date: 16 November 2021 Time: 10:00am ET / 3:00pm London / 4:00pm CET Duration: 50 minutes Knowledge graphs that link data across a wide and diverse range of sources, incorporate both structured and unstructured data, visualise connected data, and provide in-depth contextual search capabilities that deliver business insight without moving data offer great potential for...

BLOG

Alveo Integrates ULTUMUS Index and ETF Managed Data Service with Prime

Alveo and ULTUMUS, an exchange-traded fund (ETF) specialist, have partnered to bring together Alveo’s data mastering solution, Prime, and ULTUMUS’s global ETF and index managed data service. The partnership aims to enable Alveo customers to integrate index and ETF information more quickly, and allow ULTUMUS’s clients to enhance their data mastering and data integration capabilities....

EVENT

Data Management Summit London

DMS London brings together the European data management community to explore the latest challenges, opportunities and data innovations facing sell side and buy side financial institutions.

GUIDE

Entity Data Management Handbook – Seventh Edition

Sourcing entity data and ensuring efficient and effective entity data management is a challenge for many financial institutions as volumes of data rise, more regulations require entity data in reporting, and the fight again financial crime is escalated by bad actors using increasingly sophisticated techniques to attack processes and systems. That said, based on best...