About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

TORA Introduces AlgoWheel to Help Firms Create Systematic Best Ex Processes

Subscribe to our newsletter

TORA has introduced an AI-powered AlgoWheel designed to help firms create scalable and systematic best execution processes in line with the requirements of Markets in Financial Instruments Directive II (MiFID II).

The TORA AlgoWheel is a quantitative execution strategy optimiser that uses AI technology to automate low-touch order execution or provide real-time market intelligence for orders needing human intervention. It provides a feedback loop that uses historical and real-time order-level execution information to identify the optimal broker algo and inform the trading decision making process.

Historical trade execution information is captured by TORA’s post-trade transaction cost analysis (TCA) solution, while the company’s AI-driven pre-trade TCA tool is used to evaluate each order. The pre-trade TCA platform is built on a convolutional neural network that uses machine learning to increase its estimation precision over time.

Low-touch orders can be automatically executed by TORA’s Strategy Server using the recommended broker algo combination. Alternatively, the recommended broker algo can be displayed directly in the TORA trading blotter for orders where a trader wants to be involved.

When using the automated process, the Strategy Server is configurable to enable traders to customise the execution process using any number of data inputs. For example, traders can set a trading strategy to begin at a time of day, when a stock hits a certain price or pending certain overall market conditions. The server can also be configured to send a certain percentage of orders to different broker algos to help avoid sample bias.

Chris Jenkins, managing director at TORA, says: “To remain competitive in today’s market, traders need to focus their attention where they can add most value. To do that, they need an automated trading solution they trust can achieve best execution for the bulk of their orders.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Hearing from the Experts: AI Governance Best Practices

The rapid spread of artificial intelligence in the financial industry presents data teams with novel challenges. AI’s ability to harvest and utilize vast amounts of data has raised concerns about the privacy and security of sensitive proprietary data and the ethical and legal use of external information. Robust data governance frameworks provide the guardrails needed...

BLOG

Platform-Led Strategies for Solving Market Data Fragmentation, Cost and Governance Challenges

For any Chief Data Officer or Head of Trading Technology, the line item for market data is both one of the largest and most complex to manage. The challenge is no longer simply about plumbing feeds into applications. It is a strategic imperative to control spiralling costs, integrate a chaotic mix of traditional and alternative...

EVENT

RegTech Summit London

Now in its 9th year, the RegTech Summit in London will bring together the RegTech ecosystem to explore how the European capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...