About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

The Potential and Pitfalls of Large Language Models

Subscribe to our newsletter

By Tony Seale, Knowledge Graph Engineer at Tier 1 Bank.

Large Language Models (LLMs) like ChatGPT possess enormous power, stemming from their capability to ingest and compress vast amounts of general information gathered from the web. However, this capability is general rather than tailored to your specific business needs. To effectively utilise these models in a context relevant to your business, it’s essential to provide them with specific information and data related to your sector and niche. After all, if the general LLM knows everything your business knows – what’s the point of your business? But here’s the kicker: if you put garbage in, you get garbage out. Disorganised data will result in vague or even inaccurate answers.

We can state that the quality of your AI offering will directly depend on the quality of the data you input into the LLM. In other words, the quality, connectivity, organisation, and availability of information within your organisation are key factors in determining the success of your main generative AI use cases. However, there is a harsh truth to acknowledge; the data estates of most large organisations are currently very disorganised.

Given that the organisation of our data is directly related to the quality of our LLM’s responses, perhaps our primary AI strategy should actually be to double down on our data strategy!

Organising your total data estate is no trivial task, but I believe the great AI acceleration will soon make it necessary. While there are no simple answers, here are some links offering insights into building a semantic data mesh, an architectural blueprint that could help you navigate this complex journey:

Subscribe to our newsletter

Related content


Recorded Webinar: The roles of cloud and managed services in optimising enterprise data management

Cloud and managed services go hand-in-hand when it comes to modern enterprise data management (EDM), but how can the best solutions for the business be selected and implemented to ensure optimal data management based on accurate, consistent, and high-quality data, and delivering improved efficiency, better decisions and competitive advantage? This webinar will answer these questions,...


French Election Reminds Asset Managers to Expect the Unexpected

By Sam Idle, Solutions Consultant at Clearwater Analytics. **The latest results of the surprising snap French election are a timely reminder for asset managers to always expect the unexpected. The knock-on effects on their investments can create a metaphorical line at the door from anxious investors with a million questions on how their portfolios have...


AI in Capital Markets Summit London

The AI in Capital Markets Summit will explore current and emerging trends in AI, the potential of Generative AI and LLMs and how AI can be applied for efficiencies and business value across a number of use cases, in the front and back office of financial institutions. The agenda will explore the risks and challenges of adopting AI and the foundational technologies and data management capabilities that underpin successful deployment.


The Global LEI System – Slow but Sure

After what looked like a slow start to the summer, the initiative to establish a global standard for legal entity identifiers (LEIs) took a series of significant leaps forward during August, that appears to have put the project firmly back on track. If the marketplace felt a little reticent in June and July, it could...