About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Standard Life Takes Stealthy Approach to Building a Data Warehouse

Subscribe to our newsletter

A stealthy rather than Big Bang approach to data warehousing can meet business requirements in a timely and cost-conscious way, and lay the foundations for a scalable solution, said Jim Shaw, solutions architect at Standard Life, as he presented a case study of data warehouse development at last week’s Financial Information Management (FIMA) Conference in London.

“Enterprise data warehouse projects are typically large, complex, long and expensive. Significant change is required and there needs to be a high degree of senior management buy-in. That is a hard sell,” he said. “So, we reduced the complexity, time and cost, and decided to deliver an enterprise data warehouse in smaller chunks.”

Shaw’s project to build a data warehouse on an incremental basis has to abide by Standard Life rules requiring each project to have its own business case and be developed in collaboration with external partners.

In response to business requirements, Shaw and his team rolled out the first element of the data warehouse for accounting in the third quarter of 2008. This was driven by a business requirement to view accounting data across all source systems, maintain consistent data formats and provide access to data that had not previously been available to the accounting function.

A second element of the data warehouse, forward pricing, which reduced risk and allowed the movement of funds between insurance administration and investment systems, was rolled out in the fourth quarter of 2009, followed by policy assets, a core enabler of profit generation, in the fourth quarter of 2011. The next tranche of the build will support Solvency II. It will go live in 2013, delivering required balance sheets and optimising the company’s regulatory capital position.

Standard Life predefined the architecture for the data warehouse using Kimball methodology, part of its overall strategy. It then employed an Oracle database, Ab Initio extract, transfer and load tools, and Cognos business intelligence tools for data presentation to deliver the database solutions, basing what it could on reusable components such as data models and frameworks.

“The benefits of an incremental approach are productivity, data consistency and a scalable solution, but it is important to stick to strong architectural governance,” said Shaw. “The IT team worked with the business and we could support current business priorities, align with the business and structure for growth. Going forward, we will give the business control using business rules, not code, and the business will lead the extension of the enterprise data warehouse with new business processes, attributes and propositions.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Detecting and preventing market abuse

Market abuse – unlawful disclosure of inside information, insider trading, circular trading, “pump and dump” schemes, etc. – poses significant threats to the integrity of capital markets. In 2024, global trading house Trafigura agreed to pay a $55 million fine to the U.S. Commodity Futures Trading Commission (CFTC) for trading with non-public information, manipulating a...

BLOG

Data Standards Bring Many Gains (If You Have the Right Setup): Webinar Review

Standards and identifiers are helping to improve the quality of data used by capital market participants, but organisations with legacy architectures are finding it challenging to capitalise on those benefits, according to polls by A-Team Group. Half of respondents to surveys held during a recent A-Team Group Data Management Insight webinar said that data standardisation...

EVENT

ESG Data & Tech Briefing London

The ESG Data & Tech Briefing will explore challenges around assembling and evaluating ESG data for reporting and the impact of regulatory measures and industry collaboration on transparency and standardisation efforts. Expert speakers will address how the evolving market infrastructure is developing and the role of new technologies and alternative data in improving insight and filling data gaps.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...