About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Points to Everest Boost

Subscribe to our newsletter

Via a report sponsored by data feed handler specialists SR Labs, the benchmarkers at STAC have just announced data for initial tests run on Intel’s recently-introduced Everest chip. Compared to Intel’s standard Westmere chip, one data point suggests a 22% reduction in mean latency.

Everest – or Intel’s Xeon X5698 – is a dual core chip, with each core running at 4.4 Ghz, compared to the X5687 (aka Westmere), with four cores at 3.6 GHz. Intel describes Everest as an “off roadmap” chip designed for “very specific, niche high performance computing applications” while still “running within warranty covered norms, specifications and safe thermal envelope.”

The tests were run using SR Labs’ MIPS (Market Data In Process System) feed handling software. While multi-core chips are often leveraged to boost application performance, some applications are inherently single-threaded, and so benefit more from increased speed of each core. Market data feed handlers and exchange matching engines are two such applications.

For the geeks, the two “stacks under test” comprised:

– SR Labs MIPS In-Process Market Data Line Handler for TVITCH 4.1 
– CentOS 5.5, 64-bit Linux 
– IBM x3650 Server 
– Myricom 10G-PCIE2-8B2-2S Network Interface 
– Processor: 
SUT A: 2 x quad core Intel Xeon 5687 3.60 GHz (“Westmere”) 
SUT B: 2 x dual core Intel Xeon 5698 4.40 GHz (“Everest”)

The test harness for this project incorporated TS-Associates’ TipOff and Simena F16 Fiber Optic Tap for wire-based observation, along with TS-Associates’ Application Tap cards for precise in-process observation. A Symmetricom SyncServer S350 was the time source for the harness.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

FINBOURNE Integrates Agentic AI via MCP to Enable Secure, Real-Time Investment Operations

FINBOURNE Technology has integrated with Claude, the large language model developed by Anthropic, via the Model Context Protocol (MCP), enabling secure, agentic AI across investment operations. The integration allows AI agents to access live investment data, automate workflows, and perform real-time actions while maintaining enterprise-grade governance, compliance, and auditability. Introduced in late 2023, MCP is...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...