About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Points to Everest Boost

Subscribe to our newsletter

Via a report sponsored by data feed handler specialists SR Labs, the benchmarkers at STAC have just announced data for initial tests run on Intel’s recently-introduced Everest chip. Compared to Intel’s standard Westmere chip, one data point suggests a 22% reduction in mean latency.

Everest – or Intel’s Xeon X5698 – is a dual core chip, with each core running at 4.4 Ghz, compared to the X5687 (aka Westmere), with four cores at 3.6 GHz. Intel describes Everest as an “off roadmap” chip designed for “very specific, niche high performance computing applications” while still “running within warranty covered norms, specifications and safe thermal envelope.”

The tests were run using SR Labs’ MIPS (Market Data In Process System) feed handling software. While multi-core chips are often leveraged to boost application performance, some applications are inherently single-threaded, and so benefit more from increased speed of each core. Market data feed handlers and exchange matching engines are two such applications.

For the geeks, the two “stacks under test” comprised:

– SR Labs MIPS In-Process Market Data Line Handler for TVITCH 4.1 
– CentOS 5.5, 64-bit Linux 
– IBM x3650 Server 
– Myricom 10G-PCIE2-8B2-2S Network Interface 
– Processor: 
SUT A: 2 x quad core Intel Xeon 5687 3.60 GHz (“Westmere”) 
SUT B: 2 x dual core Intel Xeon 5698 4.40 GHz (“Everest”)

The test harness for this project incorporated TS-Associates’ TipOff and Simena F16 Fiber Optic Tap for wire-based observation, along with TS-Associates’ Application Tap cards for precise in-process observation. A Symmetricom SyncServer S350 was the time source for the harness.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

Unlocking Wall Street’s Dark Data: How AI Agents are Transforming Trading Floor Chat

For decades, some of the most valuable information in financial markets has been hiding in plain sight. Client intent, actionable orders, and vital market colour have been locked within the unstructured, transient streams of human-to-human chat. On trading floors worldwide – particularly in over-the-counter (OTC) markets – this conversational data represents a multi-trillion-dollar blind spot:...

EVENT

TradingTech Summit New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

Impact of Derivatives on Reference Data Management

They may be complex and burdened with a bad reputation at the moment, but derivatives are here to stay. Although Bank for International Settlements figures indicate that derivatives trading is down for the first time in 10 years, the asset class has been strongly defended by the banking and brokerage community over the last few...