About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

ScaleOut Pushes Hadoop Towards Low-Latency for Real-Time Analytics

Subscribe to our newsletter

OK, so the headline is a tad extreme, but bear with me. Recent developments combining in-memory technologies and Hadoop/MapReduce from ScaleOut Software point to a future where big data analytics and real-time processing, as it’s defined in the financial markets, could meet.

ScaleOut has just released its ScaleOut hServer V2, an in-memory data grid, which it claims can boost Hadoop performance by 20x, and can make it suitable for processing ‘live data’ to deliver ‘rea-ltime analytics’.

“To minimise execution time, ScaleOut hServer employs numerous optimisations to minimise data motion during the execution of MapReduce applications, and it can automatically cache HDFS data sets within the IMDG (a feature introduced with ScaleOut hServer V1). In addition, ScaleOut hServer’s memory capacity and throughput can be scaled by adding servers to the IMDG’s cluster. The product automatically rebalances the data set and execution workload when servers are added or removed,” says the company in a statement.

As well as boosting performance of a Hadoop deployment, hServer also incorporates Map/Reduce logic so that a Hadoop distribution is not actually required – though the company suggests its offering is not a direct replacement for Hadoop.

Nevertheless, “ScaleOut hServer is designed to be compatible with most Java-based Hadoop Map/Reduce applications developed for the standard Hadoop distributions, requiring only a one-line code change to execute applications using ScaleOut hServer.”

The big picture here is that ScaleOut – as well as other companies pushing in-memory technology – is recognising that the batch-oriented nature of Hadoop has limitations for real-time applications, such as those found in the financial markets.

While ScaleOut is today looking to boost Hadoop performance to make applications that used to take hours and minutes to execute run now in minutes and seconds, the performance trajectory could well follow that of the low-latency space, where milliseconds gave way to microseconds, and now nanoseconds.

The deployment of multi-core and multi-socket servers, GPU technologies and advances in memory will all benefit data grid vendors like ScaleOut, as well as Hadoop and other big data analytics offerings.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: The future of market data – Harnessing cloud and AI for market data distribution and consumption

25 June 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes Market data is the lifeblood of trading, but as data volumes grow and real-time demands increase, traditional approaches to distribution and consumption are being pushed to their limits. Cloud technology and AI-driven solutions are rapidly transforming how financial institutions manage, process,...

BLOG

Iress Sells QuantHouse to BAHA in Strategic Refocus

Iress has agreed to sell its European market data business QuantHouse to Vienna-based BAHA Tech Holding AG for €17.5 million, marking the latest move in the company’s strategy to streamline operations around its core Wealth and Trading & Market Data offerings. Founded in 2005, QuantHouse built its reputation as a pioneer in low-latency market data...

EVENT

AI in Capital Markets Summit New York

The AI in Capital Markets Summit will explore current and emerging trends in AI, the potential of Generative AI and LLMs and how AI can be applied for efficiencies and business value across a number of use cases, in the front and back office of financial institutions. The agenda will explore the risks and challenges of adopting AI and the foundational technologies and data management capabilities that underpin successful deployment.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...