About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

ReferenceDataFactory Unveils Bloomberg Adaptive Client

Subscribe to our newsletter

Data integration vendor ReferenceDataFactory (founded by a team of ex-FTI/GoldenSource people) has launched RDF Adaptive Client for Bloomberg Back Office. The service oriented architecture (SOA)-based solution for integration across Bloomberg Back Office and Per Security is designed to enable standards-based distribution of the data enterprise-wide. This Adaptive Client joins similar offerings for Reuters and Interactive Data sources within the ReferenceDataFactory stable. The vendor can also quickly create Adaptive Clients for sources on demand, due to the fact that there is a separation between the technology and the configuration of data, according to its managing director Andy Dilkes.

Dilkes says the ReferenceData-Factory technology is used by Accenture within its Managed Reference Data Service. Reference-DataFactory is also partnering with LakeFront Data Ventures, the consultancy founded by Dale Richards, formerly of SunGard, and recently bolstered by the hire of other ex-SunGard men Marc Odho and Rob Ord (Reference Data Review, February 2007). ReferenceDataFactory hopes to work with the large data vendors as well as financial institutions.

ReferenceDataFactory’s aim is “to enable the adaptive enterprise”, says Dilkes. “Our solution is a J2EE-based container, enabling you to plug in anything you like. Our intention is not to replace solutions like GoldenSource and Asset Control. We offer configurable adapters for existing databases – our technology could be used to get data into and out of databases like those. We can make an Asset Control or a GoldenSource behave like a service – or we could be implemented in conjunction with JRules from Ilog, for example.” The data management systems vendors are more focused on rules, internal data management and data centralisation than on integration with downstream systems, Dilkes adds. “Often they are built on proprietary technology bases, rather than on open platforms for data integration. The need for integration is obvious: the value comes with getting market and securities data out to downstream systems. Service oriented implementations are inevitable, and this space is ideal for them.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Best practice approaches to data management for regulatory reporting

Effective regulatory reporting requires firms to manage vast amounts of data across multiple systems, regions, and regulatory jurisdictions. With increasing scrutiny from regulators and the rising complexity of financial instruments, the need for a streamlined and strategic approach to data management has never been greater. Financial institutions must ensure accuracy, consistency, and timeliness in their...

BLOG

Implementing and Understanding Modern Data Architectures: Webinar Preview

The evolution of data use by financial institutions has been accompanied by ever-changing challenges to its management. With technologies such as artificial intelligence enabling firms to prise greater value from their data and to subject it to greater utilisation, a new set of data management practices have emerged. These modern data architectures regard data as...

EVENT

AI in Capital Markets Summit New York

The AI in Capital Markets Summit will explore current and emerging trends in AI, the potential of Generative AI and LLMs and how AI can be applied for efficiencies and business value across a number of use cases, in the front and back office of financial institutions. The agenda will explore the risks and challenges of adopting AI and the foundational technologies and data management capabilities that underpin successful deployment.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...