About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

ReferenceDataFactory Unveils Bloomberg Adaptive Client

Subscribe to our newsletter

Data integration vendor ReferenceDataFactory (founded by a team of ex-FTI/GoldenSource people) has launched RDF Adaptive Client for Bloomberg Back Office. The service oriented architecture (SOA)-based solution for integration across Bloomberg Back Office and Per Security is designed to enable standards-based distribution of the data enterprise-wide. This Adaptive Client joins similar offerings for Reuters and Interactive Data sources within the ReferenceDataFactory stable. The vendor can also quickly create Adaptive Clients for sources on demand, due to the fact that there is a separation between the technology and the configuration of data, according to its managing director Andy Dilkes.

Dilkes says the ReferenceData-Factory technology is used by Accenture within its Managed Reference Data Service. Reference-DataFactory is also partnering with LakeFront Data Ventures, the consultancy founded by Dale Richards, formerly of SunGard, and recently bolstered by the hire of other ex-SunGard men Marc Odho and Rob Ord (Reference Data Review, February 2007). ReferenceDataFactory hopes to work with the large data vendors as well as financial institutions.

ReferenceDataFactory’s aim is “to enable the adaptive enterprise”, says Dilkes. “Our solution is a J2EE-based container, enabling you to plug in anything you like. Our intention is not to replace solutions like GoldenSource and Asset Control. We offer configurable adapters for existing databases – our technology could be used to get data into and out of databases like those. We can make an Asset Control or a GoldenSource behave like a service – or we could be implemented in conjunction with JRules from Ilog, for example.” The data management systems vendors are more focused on rules, internal data management and data centralisation than on integration with downstream systems, Dilkes adds. “Often they are built on proprietary technology bases, rather than on open platforms for data integration. The need for integration is obvious: the value comes with getting market and securities data out to downstream systems. Service oriented implementations are inevitable, and this space is ideal for them.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

Complex Sanctions Environment Demands Powerful Screening Monitors: SIX Report

Sanctions screening technology has never been more important for financial institutions as new geopolitical and economic threats create the riskiest trading environment in recent history. That is the key finding of a new report, that highlights the need for greater resilience among organisations to the raised threat level faced by the global financial system. In...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...