About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Rates, Curves and Derived Data Management Remains a Neglected Area Following the Crisis, Says Xenomorph

Subscribe to our newsletter

Xenomorph, the analytics and data management solutions provider to global financial institutions, has today released its white paper ‘Rates, Curves and Surfaces – Golden Copy Management of Complex Datasets’. The white paper describes how, despite the increasing interest in risk management and tighter regulations following the crisis, the management of complex datasets – such as prices, rates, curves and surfaces – remains an underrated issue in the industry. One that can undermine the effectiveness of an enterprise-wide data management strategy, says Xenomorph.

In the wake of the crisis, siloed data management, poor data quality, lack of audit trail and transparency have become some of the most talked about topics in financial markets. People have started looking at new approaches to tackle the data quality issue that found many companies unprepared after Lehman Brothers’ collapse. Regulators – both nationally and internationally – strive hard to dictate parameters and guidelines.

In light of this, there seems to be a general consensus on the need for financial institutions to implement data management projects that are able to integrate both market and reference data. However, whilst having a good data management strategy in place is vital, the industry also needs to recognise the importance of model and derived data management.

”Rates, curves and derived data management is too often a neglected function within financial institutions”, says Brian Sentance, CEO Xenomorph. “What is the point of having an excellent data management infrastructure for reference and market data if ultimately instrument valuations and risk reports are run off spreadsheets using ad-hoc sources of data?”

In this evolving environment, financial institutions are becoming aware of the implications of a poor risk management strategy but are still finding it difficult to overcome the political resistance across departments to implementing centralised standard datasets for valuations and risk.

“The principles of data quality, consistency and auditability found in traditional data management functions need to be applied to the management of model and derived data too”, adds Sentance. “If financial institutions do not address this issue, how will they be able to deal with the ever-increasing requests from regulators, auditors and clients to explain how a value or risk report was arrived at?”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

GoldenSource OMNI Evolves as Buy-Side Demands Transform

Data cloud giant Snowflake’s forum in San Francisco last month was closely watched by the data management industry, especially GoldenSource. A year after its launch, the creators of GoldenSource’s OMNI data lake product for asset managers were keenly watching what Snowflake had to offer with an eye to enhancing the app’s own provisions for the...

EVENT

RegTech Summit New York

Now in its 9th year, the RegTech Summit in New York will bring together the RegTech ecosystem to explore how the North American capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...