About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Opinion: Piecing Together the Data Scientist Puzzle

Subscribe to our newsletter

By Dev Bhudia, Vice President, Product Management, GoldenSource

Depending on whom you speak to, the definition of a data scientist seems to mean different things to different people. Some see it as a glorified number crunching role, while others believe the position requires someone more inquisitive to spot and respond to key trends. The role can also be linked closely to the chief data officer (CDO), but this position is more about devising an enterprise-wide strategy to share the best data across the business.

The truth is that when people talk about data scientists, they essentially mean people who examine the interrelationships between diverse sets of data as well as the disparate systems, processes and locations that house them.

Across certain sectors, such as retail, the role is very mature. For some time now, this has been a space that has mastered the art of using the right information at the right time. Amazon is the blueprint for this: by analysing behaviour across multiple accounts, it knows exactly when and why to push a certain product to a customer.

It’s a slightly different story, however, in financial services, where the role is a bit like an uncompleted puzzle: all the pieces are there, it just hasn’t been put together. One of the reasons for this incomplete jigsaw is the inherent complexity of the industry, with so many different areas needing the position to fulfil specific tasks.

Take algorithmic trading.

To date, this is the one area that has seen the data scientist excel. This is where data scientists, or quants as they are more commonly referred to, look for trends to build highly complex computer models to beat human traders on the markets. Without data scientists, this form of market-making, responsible for so much liquidity across global markets, wouldn’t be possible.

But while the trading desk is reaping the rewards, the sector as a whole – including the middle and back offices – has only scratched the surface when it comes to deriving value from the vast quantities of information at their disposal.

In order to link the pieces across the entire financial services space, there has to be someone within an institution who focuses on looking for the relationships between data across disparate sources. Did the price spike due to a corporate action, or did it fall because a rating dropped for an issuer? What is the effect of this drop to the bottom line? While all the required skillsets already exist across the sector to find the answers, the first step is to find a way to piece them all together.

Financial institutions have people with the skills to do modelling and statistical analysis. But this needs to be married with the skillset of someone who is able to spot key trends. At present, the two pieces aren’t coming together. Once they do, the final piece is ensuring that they have the right tools to mine through the different data sets. It is no good having the combined skills if the technology isn’t underpinning them. Only once the puzzle is fully formed, will we start to see the rise of the data scientist in across the wider financial sector, similar to what we have witnessed in other industries.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

17 September 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline...

BLOG

Innovation in Data and Analytics: Turning Market Data into Strategic Advantage

At the A-Team Group’s recent TradingTech Summit London, a panel of leading industry practitioners explored the evolving role of data and analytics in trading, delving into questions such as: What types of data are truly useful in today’s market environment? How should firms think about the build-versus-buy decision when constructing data platforms? What makes data...

EVENT

TradingTech Summit London

Now in its 14th year the TradingTech Summit London brings together the European trading technology capital markets industry and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...