About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

NovaSparks’ STAC-M1 Benchmark Highlights Determinism Under Load

Subscribe to our newsletter

A just released STAC Report covering the performance of NovaSparks’ FPGA market data platform highlights not just its processing latency but also the deterministic nature of that latency under different data loads.

The STAC-M1 benchmark (as defined by financial markets participants and administered by the Securities Technology Analysis Center) measures the performance of direct data feed processing solutions according to a number of different criteria, including end-to-end latency and throughput.

The NovaSparks solution uses only FPGA microprocessors in its architecture, in contrast to offerings that augment mainstream x86 processors with FPGA acceleration of certain functions. As such, the company claims its platform is less prone to latency variance – or jitter – compared to its competitors.

The predictable – or deterministic – nature of the NovaSparks platform was borne out by the benchmark tests conducted by STAC, which simulated a Nasdaq TotalView ITCH feed being received at 2x and 20x a typical data rate at market open and close.

According to STAC: “During replay at 20 times recorded market data volumes, the NovaSparks solution demonstrated mean latency of just 1.4 microseconds, along with 99.9th percentile latency of just 2.8 microseconds. Jitter (standard deviation) was just 0.12 microseconds at 2x market rate and 0.15 microseconds at 20x market rate.” See this chart:

 

While for many the push to reduce latency further is not as big a focus as it once was, maintaining deterministic latency is still important for many trading strategies. Keeping latency constant under extreme market conditions has historically been a challenge, and its one that NovaSparks is looking to solve with its FPGA platform.

“Deterministic processing of market data at ultra-low latency rates is a breakthrough for an industry that is constantly re-assessing their ability to trade across all market conditions,” says Michal Sanak, CIO at proprietary trading firm RSJ.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: High-Performance Networks & Low-Latency Connectivity for Trading

10 June 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes With financial markets becoming more complex and interconnected in today’s electronic trading environment, trading firms, exchanges, and infrastructure providers need to continually push the boundaries of network performance to stay ahead. Ultra-low latency, seamless connectivity, and resilient infrastructure are no longer...

BLOG

Barchart and SIGMA Financial AI Announce Strategic Partnership to Enhance AI-Driven Trading Solutions

Barchart, the market data and technology solutions provider, has entered into a strategic partnership with AI-driven trading solutions provider SIGMA Financial AI. The collaboration will combine Barchart’s extensive market data with SIGMA’s advanced AI and machine learning technology to offer enhanced tools and insights for investors and traders. “This partnership is highly synergistic, benefiting both...

EVENT

Data Management Summit London

Now in its 15th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Institutional Digital Assets Handbook 2024

Despite the setback of the FTX collapse, institutional interest in digital assets has grown markedly in the past 12 months, with firms of all sizes now acknowledging participation in some form. While as recently as a year ago, institutional trading firms were taking a cautious stance toward their use, the acceptance of tokenisation, stablecoins, and...