About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Nasdaq Adds AI and Transfer Learning to Enhance Market Surveillance

Subscribe to our newsletter

Nasdaq has enhanced market surveillance of its US stock exchange following the introduction of artificial intelligence (AI) and transfer learning to improve detection of malicious activity. Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. The company plans to push use of the technology to other exchanges and regulators through its Market Technology business, and will implement it in other Nasdaq markets. In time, it will also extend the range of scenarios the system detects.

The technology supports automated detection, investigation and analysis of potentially abusive or disorderly trading, and is the result of collaboration between Nasdaq’s Market Technology business, Machine Intelligence Lab and US market surveillance unit. It provides deep learning, allowing computers to understand extremely complex patterns and hidden relationships in massive amounts of data, and learn invariant representations; and transfer learning to create new models from old models and achieve rapid implementation, scalable model development, and detection of new forms of financial crime in new markets. Human-in-the-loop learning allows analysts to share their expertise with the machine, while human assisted model improvement leads to more signal and less noise in flagged examples.

Tony Sio, vice president and head of marketplace regulatory technology at Nasdaq, says that by training models based on their experience in monitoring data directly from the trading engine of the Nasdaq stock exchange, and using transfer learning, the company has built a framework that can provide learning to other marketplaces.

Martina Rejsjo, vice president and head of market surveillance, North America equities at Nasdaq, comments: “By incorporating AI into our monitoring systems, we are sharpening our detection capabilities and broadening our view of market activity to safeguard the integrity of our country’s markets.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Data platform modernisation: Best practice approaches for unifying data, real time data and automated processing

Date: 17 March 2026 Time: 10:00am ET / 3:00pm London / 4:00pm CET Duration: 50 minutes Financial institutions are evolving their data platform modernisation programmes, moving beyond data-for-cloud capabilities and increasingly towards artificial intelligence-readiness. This has shifted the data management focus in the direction of data unification, real-time delivery and automated governance. The drivers of...

BLOG

ICE to Provide FX and Precious Metals Data to Chainlink Network

Intercontinental Exchange (ICE) has agreed to provide foreign exchange and precious metals data from its ICE Consolidated Feed to Chainlink, the infrastructure for tokenised assets. Under the new collaboration, ICE’s market data will be used as a contributing source for the derived data sets offered through Chainlink Data Streams. These streams are used by a...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

The Reference Data Utility Handbook

The potential of a reference data utility model has been discussed for many years, and while early implementations failed to gain traction, the model has now come of age as financial institutions look for new data management models that can solve the challenges of operational cost reduction, improved data quality and regulatory compliance. The multi-tenanted...