About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

‘Multi-Genre Analytics’ Emerges For Pre-Trade Assessments

Subscribe to our newsletter

Data analytics provider Teradata has developed a new type of algorithmic analytics applicable to securities trading information, called “multi-genre analytics.”

Teradata developed the service in response to firms seeing predictive models as a cost they get stuck with when those models are needed for certain kinds of trades, says Sri Raghavan, global product marketing manager.

Major firms such as JPMorgan and Citi use significant structures for trades, so the data they generate is continuous and becomes enormous in terms of volume. By mixing and matching algorithmic models with analysis of the paths that trades take, multi-genre analytics can generate conditions that should be met before a trade proceeds, according to Raghavan.

“Some broker-dealers or traders put a lot of unstructured text into their trades. There is a lot of text parsing that needs to happen. That all has to happen even before doing path analysis,” he says.

Structuring and organisation of text information from trades has to be completed as a pre-requisite for multi-genre analytics. The practise then functions by choosing and applying appropriate analysis methods, as Raghavan explains.

“It’s usually a combination of analytic techniques that are applied in an ensemble manner,” he says. “Then a predictive model is generated which determines which band a trade can fall under, with some likelihood. Usually a distribution of likelihoods is given and the one with the highest likelihood is picked.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to get data lineage right

Data lineage is key to regulatory compliance and financial institutions’ ability to understand and use their data to business advantage. It is also important from an operational perspective, as a successful implementation can identify systems and data feeds that are no longer necessary and can be switched off, saving money and resource. The webinar will...

BLOG

A (Free) Practical AI Handbook for Capital Markets Professionals

Artificial Intelligence (AI) has swiftly transitioned from a promising concept into an operational reality across the capital markets. Senior executives, compliance leaders, and technology specialists are already well-acquainted with the potential of AI to streamline processes, enhance decision-making, and open new competitive opportunities. Yet, the current challenge isn’t about grasping AI’s transformative potential – it’s...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...