About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Making Data Valuable Requires Quality and Structure

Subscribe to our newsletter

Building the ability to recognise the value in data and derive that value for the enterprise is a complicated proposition to include in data management models, according to experts who spoke at the Data Management Summit hosted by A-Team Group in New York earlier this month.

First, firms should establish an “accountability structure through a model that cascades from the data owner at the highest level, to the people on the line, the operations, the people who originate accounts, and the IT people who fix accounts with business system owners,” said Tom Mavroudis, head of enterprise data governance at MUFG Union Bank.

The data management model needs a prioritisation capability, or a mechanism to recognise value, according to Jennifer Ippoliti, firmwide data governance lead at JP Morgan Chase. “Knowing which problems to go after, in what order and what to expect from them, means when you close out that issue, you know it was worth the time and effort,” she said. “It’s specific to the technology and business partnership – and really clear about roles, responsibilities and division of labour. You cannot ever stop iterating that model and making it more precise.”

JP Morgan Chase addressed data management by reconfiguring its leadership, establishing a chief data officer (CDO) role and naming CDOs in different business lines and departments. “It’s about how we apply governance to unstructured datasets and the cloud, to make sure the foundational tools we build have the right datasets to begin with,” said Ippoliti.

Evaluating the precision of a data model can be done in many ways, but one should not discount sheer confidence in the data being used, stated Peter Serenita, group CDO, HSBC. “We can come up with a lot of different algorithms and metrics,” he said. “Some of them will mean something to someone, but ultimately, the answer is the firm’s confidence in the data it’s using. Call it a ‘confidence index’, which can indicate if the data previously did not seem to be fit-for-purpose and you didn’t want to use it, or if now, you have strong confidence in that data – that it has been checked and double-checked.”

Trust is key to such confidence in data, particularly the precision of calculations, according to David Saul, senior vice president and chief scientist at State Street. “For anyone making a decision based on the data, their level of confidence in that decision is going to be about how well they trust it, do they know where it came from and what it means,” he said. “That’s true internally and for delivering data to our clients, that they trust we’ve done all the calculations. Also, regulators need to trust that what we deliver is an accurate representation of what is needed to reduce the risk in the market. You must have hard data to prove whether it’s the legacy of the data or it’s how you did the calculations, the algorithm you used and ultimately whether it means what you say it means.”

The origin of data can be tracked successfully through creation of data ontologies, in transactional or operational systems, to determine how the data should be used for risk management, added Saul.

To build more complex accountability structures and prioritisation capabilities, as Mavroudis and Ippoliti advocated, confidence in the quality and sourcing of data is essential, as Serenita and Saul said. To derive value from data, accountability and priorities must be well defined, and be applied to trustworthy data, as the experts illustrated.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: AI in Asset Management: Buy-Side Attitudes toward GenAI and LLMs

Date: 8 October 2024 Time: 10:00am ET / 3:00pm London / 4:00pm CET Duration: 50 minutes Since ChatGPT exploded onto the scene in late 2022, financial markets participants have been trying to understand the opportunities and risks posed by artificial intelligence and in particular generative AI (GenAI) and large language models (LLMs). While the full...

BLOG

SIX Invests in BITA to Enhance Global Benchmark Platform and Expand Indexing Technology Services

SIX, the Swiss financial data and market infrastructure provider, has made a strategic investment in BITA, the indexing technology and services company. The move aims to bolster a range of ongoing joint projects and fast-track the global expansion of SIX’s benchmark platform. Existing BITA shareholders, including ETFS Capital, Volta Ventures, and Pamica NV, have also...

EVENT

RegTech Summit London

Now in its 8th year, the RegTech Summit in London will bring together the RegTech ecosystem to explore how the European capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Directory of MiFID II Electronic Trading Venues 2018

The inaugural edition of A-Team Group’s Directory of MiFID II Electronic Trading Venues 2018 offers a guide to the European landscape resulting from new market structure introduced by the January 3, 2018 implementation of Markets in Financial Instruments Directive II (MiFID II). The directory provides detailed profiles of more than 70 venue operators and their...