About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

JJ Gets Down to “Nitty-Gritty” of “Grimy” Data Business

Subscribe to our newsletter

Reference data projects are “huge, scary and often not perceived as adding measurable value”. To avoid being derailed by the complexity and long payback time of such projects, firms should break the problem down into manageable chunks and accept that great value can be added to the business by addressing just part of the problem, either as a discrete project or within the context of an overall programme. This is the view of Neil Edelstein, a 30 year veteran of the data business who recently left Accenture to join New York based professional services firm Jordan & Jordan as director and reference data specialist.

Prior to his time as senior manager of data management services at Accenture, Edelstein counts stints at S&P, Muller Data, FT Interactive Data and DTCC and SunGard among his previous positions, and has, he says, “seen the data business evolve, from a focus mainly on market data to full-blown reference data services”.

During that time, the drivers for data projects have changed, he believes. “Historically, cost reduction, staff reallocation and outsourcing opportunities have been the key drivers,” he says. “Clearly, we have learned that there is no one key driver for all firms and that data management projects necessitate a high level of customization.” The real driver these days for data projects is risk, he contends: “Increasingly, risk systems play an important part in determining the breadth and depth of a firm’s data management strategy. Are present coverage and accuracy levels compliant with industry and firms’ specific analytics?”

Based on his work with clients, Edelstein believes that enterprise wide data management projects can be decomposed, as they are comprised of “a spectrum of highly-definable sub-projects”. The optimum approach, he says – which he looks forward to applying with Jordan & Jordan clients – is to get down to the “nitty-gritty of data content”, to look at the “existing data infrastructure, data quality and coverage down to the data attribute level in order to tailor project scope accordingly”. “I believe esoteric data management projects don’t work,” he says. “Frankly, data is a grimy business, and one must dig down deeply to understand and clearly establish a firm-wide definition of reference data. I have seen confusion regarding the categorisation of third party reference data, internal data, analytics data and accounting data, causing issues related to project scope and timelines.”

While many firms have considered or initiated data management projects, often it becomes difficult to structure a solid business case, he says. By viewing data management as a series of independent projects, and providing incremental value with the completion of each project along the way, project risk is mitigated, Edelstein contends. “In short, successful data management strategies carve out the logical pieces of the lifecycle of a data management project, in order to incrementally add value by breaking the overall strategy into discrete stages that can stand on their own.”

Upfront work may be required, he says – “introspection and self-assessment of internal preparedness and end user expectations, identification of data ownership, and understanding of the use of data in downstream applications.” As part of the internal preparedness check, Jordan & Jordan focuses on firm-wide pain points being experienced – such as data consistency, coverage, timeliness or achieving downstream systems integration. “This detailed investigation clearly helps define an enterprise data strategy as well as overall project definition, but at the same time provides value to a business unit whether or not a more comprehensive firm-wide data management project is undertaken,” Edelstein says.

Not until these upfront aspects of the project have been fully understood, he says, can evaluation of data vendors, approaches to data management, platforms and technology strategies be considered.
While data content is key, Edelstein says, he also encourages a “very practical focus” on technology. “Decisions regarding internal or third party warehousing tools must be analysed with respect to complexity of data content,” he says. “In addition, workflow tools must be scaled accordingly, providing logical operational efficiencies without adding to overhead unnecessarily.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Mastering Data Lineage for Risk, Compliance, and AI Governance

18 June 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes Financial institutions are under increasing pressure to ensure data transparency, regulatory compliance, and AI governance. Yet many struggle with fragmented data landscapes, poor lineage tracking and compliance gaps. This webinar will explore how enterprise-grade data lineage can help capital markets participants...

BLOG

SimCorp Urges a Holistic View of Buy-Side Retooling to Enable AI

You don’t have to scratch far below the surface of the artificial intelligence hype machine to see that many financial institutions are experiencing challenges in implementing the technology. Our own Data Management Insight annual preview in January of predictions for the coming year found that vendors and users alike reported the dawning of a realisation that, for...

EVENT

TradingTech Summit MENA

The inaugural TradingTech Summit MENA takes place in November and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions in the region.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...