About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Intelligent Trading Summit Considers Potential of Predictive Analytics and Machine Learning

Subscribe to our newsletter

Predictive analytics, machine learning and sentiment analysis are making their way into the trading environment, but how useful are they and will they provide a new model for intelligent trading? These questions and more will be discussed at next week’s A-Team Group Intelligent Trading Summit in New York.

Adrian Sharp, senior industry consultant, capital markets, Teradata, will moderate a panel session that will consider the potential of these emerging capabilities during the summit. He will be joined on the panel by Li Yang, vice president, lead of development, Citi; Philippe Burke, managing partner, Apache Capital; Antonio Hallak, CEO, Sibyl Trading; Steven Cohen, CEO, Gold Coast Advisors; and Yadu Kalia, worldwide business architect, financial services, IBM.

Moving on from high frequency algo trading, which is driven by speed but ultimately limited by system power, the panel will consider how the trading model may change over time to become less about speed and more about predictive analytics that could, perhaps, identify what might happen in the next 10 milliseconds.

Machine learning and sentiment analysis, which introduces unstructured data, also reduce speed. If these technologies are deployed in trading, a use case that includes a different view of time to that used in high frequency trading is required.

Sharp suggests there is a place in trading for machine learning, sentiment analysis and predictive analytics, but says it is difficult to find use cases for the technologies at the moment. He explains: “If machine learning, sentiment analysis and predictive analytics are applied to trading, the trading process changes and the model is different to that used for high frequency trading. The question is whether we are going to continue to exploit inefficiencies in the market or take a broader view over a longer time by bringing in more analytics.”

To find out more about:

  • Alternative trading models
  • The power of predictive analytics
  • Use cases for machine learning
  • Future trading developments

Register to attend the A-Team Intelligent Trading Summit.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The challenges and potential of data marketplaces

Data is the lifeblood of capital markets. It is also a valuable commodity providing financial institutions with additional insight when gathered in an internal data marketplace, or packaged and sold externally to other institutions. While the theory is sound, the practice of setting up a data marketplace can be challenging. Internally, vast amounts of data...

BLOG

Trading Technologies Expands Risk Management Offering and Post-Trade Allocation Services

Trading Technologies, the trading software, infrastructure and data solutions vendor, through its partnership with KRM22, the risk management software company, is making the KRM22 Risk Manager available to customers on the TT platform. Incorporating KRM22’s real-time post-trade risk service will significantly enhance TT’s risk toolset, according to a recent company announcement. KRM22’s risk scoring system...

EVENT

ESG Data & Tech Summit London

The ESG Data & Tech Summit will explore challenges around assembling and evaluating ESG data for reporting and the impact of regulatory measures and industry collaboration on transparency and standardisation efforts. Expert speakers will address how the evolving market infrastructure is developing and the role of new technologies and alternative data in improving insight and filling data gaps.

GUIDE

Hosted/Managed Services

The on-site data management model is broken. Resources have been squeezed to breaking point. The industry needs a new operating model if it is truly to do more with less. Can hosted/managed services provide the answer? Can the marketplace really create and maintain a utility-based approach to reference data management? And if so, how can...