About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

IMF Publishes Possible Revisions to its Data Quality Assessment Framework

Subscribe to our newsletter

Given the regulatory community’s crackdown on data quality across the financial services industry, the International Monetary Fund’s (IMF) recently published paper on the improvement of its data quality assessment framework indicators is judiciously timed. In the paper, the IMF’s statistics department suggests improvements to its current set of metrics against which to measure the quality, accuracy and reliability of data gathered during a supervisory endeavour.

Although the IMF’s data quality measurement focus is largely on macroeconomic data for a specific purpose, the lessons in data quality are applicable to much of the other work going on across the regulatory spectrum. Its data quality assessment framework has been developed to provide a framework for a uniform and standardised assessment of data quality and improvements of data compilation and dissemination practices; something that many regulators are focusing on in the search for a better way to evaluate systemic risk.

For example, the European Systemic Risk Board (ESRB) and the US Office of Financial Research will need to regularly evaluate their data quality checking practices, as well as measuring those of the firms they are monitoring. After all, both are charged with collecting the data on which important judgements must be made with regards to systemic risk.

The IMF’s framework currently examines five dimensions of data quality: prerequisites of quality, assurance of integrity, methodological soundness, accuracy and reliability, serviceability and accessibility. The paper, which has been penned by Mico Mrkaic from the IMF’s statistics department, examines whether these are appropriate metrics to use and suggests other possible variables to consider and various practical examples.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Strategies, tools and techniques to extract value from unstructured data

Unstructured data is voluminous, unwieldy and difficult to store and manage. For capital markets participants, it is also key to generating business insight, making better-informed decisions and delivering both internal and external value. Solving this dichotomy can be a challenge, but there are solutions designed to help financial institutions digest, manage and make best use...

BLOG

Leading the Fight Against Corporate Fraud: How Every Business Can Embrace Transparency

By Alexandre Kech, chief executive at GLEIF. With criminals flourishing in the shadows of the global economy, shining a light on the legal entities involved in cross-border transactions is a foundational requirement to restore trust. For even the smallest organisations, this represents a compelling opportunity to make transparency a strategic priority and combat risk by...

EVENT

TradingTech Summit MENA

The inaugural TradingTech Summit MENA takes place in November and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions in the region.

GUIDE

The Data Management Implications of Solvency II

Bombarded by a barrage of incoming regulations, data managers in Europe are looking for the ‘golden copy’ of regulatory requirements: the compliance solution that will give them most bang for the buck in meeting the demands of the rest of the regulations they are faced with. Solvency II may come close as this ‘golden regulation’:...