About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

IBM CDO Presents the Case for a Cognitive Enterprise

Subscribe to our newsletter

Creating a cognitive enterprise is within reach and could ease the regulatory burden, increase the efficiency of data management, and improve decision making. Discussing the use and potential of cognitive technologies at A-Team Group’s recent Data Management Summit in New York, Inderpal Bhandari, global chief data officer at IBM, set out IBM’s view of cognition and described some use cases of the company’s Watson system.

Bhandari said IBM defines a cognitive system as one that is expert in its domain and supports natural forms of expression such as communication with humans. The system should be educated by humans rather than programmed, evolve its knowledge and become smarter and speedier, and therefore augment user decision making.

Noting the use of IBM’s Watson cognitive system for oncology all around the world, and answering the question of why organisations are implementing the technology now, Bhandari said: “It would take doctors 160 hours a week to keep up with medical literature. This sort of scenario is true in any profession where there is a data explosion. Cognitive technology can help you keep up and make better decisions.” Capital markets regulation could be a case in point here, he suggested.

Themes to consider when planning cognitive solutions include the use of unstructured data and more external data, as well as internal data. Bhandari commented: “About 80% of organisations’ data is unstructured and never used for decision making. This needs thinking about. External data such as news feed and social media also need to be leveraged.”

Looking at cognitive technology for the enterprise, Bhandari noted that data management typically involves thousands of experts in many domains and functions, and is a process requiring human judgement. He cited the example of data classification and the need, perhaps, to classify whether clients are government owned. This, he said, requires human judgement, but can be skewed by people in different parts of the enterprise, such as sales and legal, classifying clients with different intent in mind. Intelligent systems like Watson, he suggested, can improve classification by relating datasets in real time.

Bhandari pointed to other use cases of the technology, including preparation processes for new products that are now very manual, supply chain optimisation based on an understanding of the weather or global or political unrest, and a connected cockpit using weather data collected in real time and used by airlines to avoid delays caused by weather.

He concluded: “As the organisational memory of a cognitive system is filled, the system becomes more accurate and efficient. An intelligent system leads users to required data.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: End-to-End Lineage for Financial Services: The Missing Link for Both Compliance and AI Readiness

The importance of complete robust end-to-end data lineage in financial services and capital markets cannot be overstated. Without the ability to trace and verify data across its lifecycle, many critical workflows – from trade reconciliation to risk management – cannot be executed effectively. At the top of the list is regulatory compliance. Regulators demand a...

BLOG

GoldenSource OMNI Evolves as Buy-Side Demands Transform

Data cloud giant Snowflake’s forum in San Francisco last month was closely watched by the data management industry, especially GoldenSource. A year after its launch, the creators of GoldenSource’s OMNI data lake product for asset managers were keenly watching what Snowflake had to offer with an eye to enhancing the app’s own provisions for the...

EVENT

RegTech Summit New York

Now in its 9th year, the RegTech Summit in New York will bring together the RegTech ecosystem to explore how the North American capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...