About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

DataRobot on FactSet Adds Machine Learning into Investment Workflow

Subscribe to our newsletter

In early August, FactSet and DataRobot introduced an artificial intelligence (AI) investment workflow, DataRobot on FactSet, an automated machine learning (ML) tool that helps financial services firms – particularly those lacking significant data science teams – incorporate AI into their investment workflows.

At the moment there is a shortage of data scientists within the investment management industry – in particular, those who know how to code in Python –at a time when demand for this skill set is continuing to grow. For. example, for certain portfolio modelling or risk analysis approaches, investment management teams need to have in place automated data collection that will update their algorithms.

According to FactSet, the DataRobot on FactSet solution integrates machine learning technology from DataRobot into the FactSet platform, enabling clients to build, deploy, monitor, and manage sophisticated machine learning models quickly and easily. Investment managers without specific data science knowledge can use the tool to create AI applications for areas such as equity volatility, bond performance, and macroeconomic event predictions.

FactSet says the tool provides the guardrails required for investment managers without data science expertise to build and deploy advanced machine learning. For firms that already have existing data science teams, DataRobot on FactSet can increasing the speed and scale of their financial models, the company says.

“Clients are looking for more effective data and AI tools that will help them surface new investment insights faster and with greater efficiency,” said Rob Robie, executive vice president, analytics, at FactSet. “We are excited to be working with DataRobot to provide an elegant and intuitive solution that allows users to develop and execute successful machine learning strategies.” FactSet had already been using DataRobot tools internally for its own needs for several years.

“There is an unprecedented opportunity for investment professionals to capitalise on their data, and now is the time to adopt robust AI and machine learning capabilities,” said Rob Hegarty, general manager of financial markets and fintech, DataRobot. “We’re excited to work with FactSet on this dynamic integration which will help more organisations make data-driven decisions and realise the true value of AI.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Trade the Middle East & North Africa: Connectivity, Data Systems & Processes

In Partnership With As key states across the region seek alternatives to the fossil fuel industries that have driven their economies for decades, pioneering financial centres are emerging in Egypt, United Arab Emirates (UAE), Saudi Arabia and beyond. Exchanges and market intermediaries trading in these centres are adopting cutting-edge technologies to cater to the growing...

BLOG

From Monolithic to Agile Architectures in High-Performance Trading Systems

In this special episode of FinTech Focus TV, filmed live at TradingTech Summit 2025 in Canary Wharf, Toby sits down with Jon Butler, Co-Founder & CEO at Velox, to explore the evolution of trading technology. From the rise of buy-and-build models to the real impact of AI and automation, Jon shares insights on what’s shaping...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...