About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Data Management Summit Workshop: EDMworks Maps a Route to Successful Data Governance

Subscribe to our newsletter

Data governance is essential to managing not only regulatory requirements, but also client lifecycles, product innovation and cost and risk reduction programmes. While this is increasingly the case, developing data governance policies and processes that deliver tangible outcomes can be difficult. Dennis Slattery, CEO of EDMworks, set out the requirements for successful data governance – including collaboration, data ownership and senior management buy in – at last week’s A-Team Data Management Summit in London.

Slattery noted particular need for data governance to support regulatory compliance and good customer experience, but said this can only be achieved through changes to company culture, a shift from process driven data models to data ownership schemes, and the simplification of bank’s business models that, in the case of large banks, can include tens of thousands of systems.

He explained: “Large banks need to make cultural changes. To start, they need to ensure people put good information into front-end systems. Then they need to consider the pressure on people to satisfy regulations, improve client offerings and replace legacy systems with simpler systems. All these areas have interrelated datasets that must be managed, so the need is to set target states for the data environment and initiate change programmes while running the business as usual. A clear vision of data architecture is useful and must be communicated to everyone as success comes down to a culture that fosters collaboration on data and encourages people to work to a plan. Ultimately, this will deliver one view of each customer.”

Typically, an organisation will create a group policy on data governance that provides a framework in which particular aspects of the business can be prioritised, perhaps the customer experience, regulatory compliance or need for greater efficiency. Using a principles based approach to governance it is then possible to step through understanding data, not just entity data but also the data around it; data design, which will provide a vision of data architecture; and data integration, which will join up data sets, help to make data consistent and reduce numbers of legacy systems.

Data processes can then be brought into the governed environment and assessed using tools such as the Enterprise Data Management Council’s Data Management Capability Assessment Model. Sentiment based assessment is also important as people have different perspectives on processes. Assessments of data lineage and profiling can also be made and the analysis of data quality, a key element of data governance including data accuracy, completeness and timeliness, can begin.

With a clear understanding of the current state of processes and data, it is then possible to map information about the processes and gradually build up commonality of data. These steps generate an understanding of who has an interest in particular data and lead to the allocation of data ownership. Slattery explained: “Data ownership needs senior level commitment and oversight. It needs to include accountability for data in each link of an end-to-end process, data within business units and data across a bank.”

Considering the end game of data governance with tangible outcomes, Slattery concluded: “Once a data governance framework is in place, it is essential to communicate this to everyone across the bank and train everyone who will be part of the governance process. Successful data governance will make data owners proud and improve the business, but if it doesn’t work out, the dinosaur problem will appear and new companies will move into the market.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

4 September 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and...

BLOG

Being Prepared for Tomorrow Requires an Advanced Data Architecture Today

By Don Huff, Global Head of Client Services and Operations, Bloomberg and Maureen Gallagher, Head of Enterprise Reference Data, Bloomberg. Data has quickly become the hottest commodity in the financial sector: trading and investment teams are laser-focused on accessing the best, newest data to get an edge on the competition. While this arms race for...

EVENT

Future of Capital Markets Tech Summit: Buy AND Build, London

Buy AND Build: The Future of Capital Markets Technology London examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...